
Framer X Essentials
Unlock the full potential of Framer X with this cheat sheet covering essential shortcuts, core concepts, design tools, and code component basics for

rapid prototyping and design.

Core Concepts & Navigation

Design & Layout Tools

Keyboard Shortcuts (Mac)

Cmd + N New Document

Cmd + O Open Document

Cmd + S Save Document

Cmd + Shift + S Save As…

Cmd + W Close Window

Cmd + Q Quit Framer X

Space + Drag Pan Canvas

Cmd + (+/-) Zoom In/Out

Cmd + 0 Zoom to Fit Canvas

Cmd + 1 Zoom to Actual Size (100%)

Basic Tools

V Select Tool

F Frame Tool (Artboard)

R Rectangle Tool

O Oval Tool

L Line Tool

T Text Tool

P Pen Tool

C Code Tool (Create Code Component)

Cmd + D Duplicate Layer

Cmd + G Group Layers

Layer Operations Shortcuts

Cmd + [Send Backward

Cmd +] Bring Forward

Cmd + Shift + [Send to Back

Cmd + Shift +] Bring to Front

Cmd + Shift + L Lock/Unlock Layer

Cmd + Shift + H Hide/Show Layer

Cmd + R Rename Layer

Shift + Click Select Multiple Layers

Option + Drag Duplicate Layer by Dragging

Enter Edit Layer (Text, Vector, etc.)

Framer X UI Explained

Toolbar: Located at the top, contains tools for creating layers, frames, text,

and adding assets/components.

Sidebar (Left): Manages pages, layers, and assets. Hierarchical view of your

project elements.

Canvas: The main workspace where you design and arrange your frames and

layers.

Properties Panel (Right): Displays and allows editing of properties for the

selected layer or frame (style, layout, code overrides, etc.).

Preview Window: Shows an interactive preview of your prototype.

Accessible via the Play button in the toolbar.

Code Editor: Integrated environment for building and editing code

components. Accessed by selecting a code component and clicking ‘Edit

Code’.

Component Panel: Shows available design and code components from the

store, project, or shared libraries.

Working with Frames

Creating Frames: Use F or the Frame tool in the toolbar. Choose a preset

device size or draw a custom one.

Frames vs. Groups: Frames are artboards, defining a screen or section.

Groups just organize layers. Frames are essential for navigation.

Scrolling: Select a Frame and set its ‘Scroll’ property in the right panel

(Vertical, Horizontal, Both, None).

Overflow: Use the ‘Overflow’ property to clip content (Hidden) or show it

(Visible , Scroll).

Background: Set frame background color, gradient, or image in the style

properties.

Renaming: Double-click the frame name in the canvas or layer list, or select

and press Cmd + R .

Introducing Stacks

What are Stacks? Powerful layout containers that arrange child layers

automatically (similar to Flexbox or Auto Layout).

Creating Stacks: Select multiple layers or a group, right-click, and choose

‘Create Stack’, or use the button in the Properties panel.

Direction: Set layout direction (Horizontal or Vertical).

Distribution: Controls how items are spaced (Start , Center , End ,

Between , Around).

Alignment: Aligns items along the cross-axis (Start , Center , End ,

Stretch).

Padding & Spacing: Set padding around the stack’s content and spacing

between items.

Item Controls: Individual stack items can have their own size set (fixed,

relative) and alignment overridden.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1010-framer-x-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1010-framer-x-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1010-framer-x-essentials-cheatsheet
https://cheatsheetshero.com/

Code Components & Overrides

Creating Links & Navigation

What are Links? Connections between layers (usually buttons or interactive

elements) and Frames to simulate screen transitions.

Creating Links: Select the source layer, click the ‘Link’ icon in the Properties

panel, and drag the arrow to the target Frame.

Target: Specify the destination Frame.

Transition: Choose a transition style (Push, Modal, Flip, Fade, None, etc.).

Direction: Set the direction for directional transitions (Left, Right, Up, Down).

Gesture: Define what triggers the link (Tap/Click, Long Press, etc.).

Back Links: Use the ‘Back’ transition to automatically navigate to the

previous screen in the history.

Code Component Basics

What are Code Components? React components built in Framer X that

combine design and code logic. Appear as design assets in the UI.

Creating: Use the Code tool (C) or File > New Code Component. Choose a

template (Basic, With Props, With State).

Editing: Double-click the component in the Components panel or select it on

the canvas and click ‘Edit Code’.

Props: Define configurable properties that appear in the Properties panel

(props object in component code).

State: Manage internal component state using useState or useReducer

hooks.

Children: Use props.children to allow design layers to be nested inside

the component.

Imports: Import necessary React features (useState , useEffect) or

other modules/libraries.

Exporting: Components must be exported using export const

ComponentName =

Using Overrides

What are Overrides? Code snippets written in a special file

(Overrides.tsx) that modify properties or behaviors of design layers

without turning them into full code components.

Creating Overrides File: File > New Overrides File or click the ‘Code’ button

in the left sidebar.

Applying Overrides: Select a layer on the canvas, go to the ‘Code’ section in

the Properties panel, and select an override function from the dropdown.

Syntax: Overrides are functions that return a properties object. They

typically take the layer’s existing props as an argument.

export function AnimateOnTap(): Override {

 return {

 onTap() {

 return {

 scale: 0.8,

 opacity: 0.5,

 transition: { duration: 0.2 }

 }

 },

 onTapEnd() {

 return {

 scale: 1,

 opacity: 1,

 transition: { duration: 0.2 }

 }

 }

 }

}

Common Use Cases: Adding tap gestures, animations, state changes based

on interactions, fetching data, etc.

Benefits: Keep design and code separate, easily apply interactive behaviors

to static design elements.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Workflow & Assets

Tips for Code Components

Use React hooks (useState , useEffect , useRef , useMemo) for

managing state and side effects.

Define prop types (PropTypes) to ensure data consistency and provide

documentation.

Start with simple components and gradually add complexity.

Leverage the built-in code editor with TypeScript support and live preview.

Organize your code components into folders within your project.

Remember that Code Components are reusable building blocks. Design

layers can be nested within them.

Working with Assets

What are Assets? Reusable design elements (Colors, Text Styles, Images)

and components.

Adding Assets: Click the + button in the Assets panel (left sidebar). You

can add Colors, Text Styles, and Components.

Using Assets: Apply colors and text styles from the Assets panel in the

Properties panel. Drag components onto the canvas.

Syncing Assets: Assets can be synced with other design tools (like Sketch)

or shared via Framer Teams.

Updating Assets: Edit an asset in the Assets panel, and all instances used in

the project will update.

Importing Images: Drag and drop images onto the canvas or use Cmd +

Shift + I .

Exporting: Select layers or frames and use Cmd + E .

Sharing and Collaboration

Publishing: Click the ‘Publish’ button in the toolbar to create a shareable web

link for your prototype.

Private vs. Public: Choose whether the published link is public or requires an

invitation.

Embed: Get code to embed your prototype on a website.

Versioning: Framer X includes built-in versioning, accessible from the File

menu.

Commenting: Collaborate with others by leaving comments directly on

frames in the published prototype.

Teams: For larger teams, Framer Teams offers shared libraries, project

permissions, and enhanced collaboration features.

Performance Tips

Avoid deeply nested layer hierarchies where possible.

Optimize images before importing them.

Use Stacks for layout instead of manual spacing where appropriate.

Be mindful of complex code components, especially those performing heavy

calculations or many state updates.

Limit the number of layers on a single frame if performance issues arise,

potentially breaking content across multiple frames.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

