

A concise reference guide to fundamental concepts, formulas, and principles in Physics. Ideal for students and professionals seeking a quick review.

Mechanics

Kinematics	
Displacement (\Delta x)	\Delta x = x_f - x_i (final position - initial position)
Average Velocity (v_{avg})	v_{avg} = \frac{\Delta x} {\Delta t} (displacement / time)
Average Acceleration (a_{avg})	a_{avg} = \frac{\Delta v} {\Delta t} (change in velocity / time)
Final Velocity (v_f) (constant acceleration)	v_f = v_i + at (initial velocity + acceleration * time)
Displacement (\Delta x) (constant acceleration)	\Delta x = v_i t + \frac{1} {2}at^2
Final Velocity Squared (v_f^2) (constant acceleration)	v_f^2 = v_i^2 + 2a\Delta x
Position (x) as a function of time (t)	$x(t) = x_0 + v_0t +$ (1/2)at^2
Average Speed	Total distance traveled / Total time

Dynamics	
Newton's First Law (Inertia)	An object at rest stays at rest, and an object in motion stays in motion with the same speed and in the same direction unless acted upon by a force.
Newton's Second Law	F = ma (Force = mass * acceleration)
Newton's Third Law	For every action, there is an equal and opposite reaction.
Weight (W)	W = mg (mass * acceleration due to gravity)
Frictional Force (F_f)	F_f = \mu F_N (coefficient of friction * normal force)
Static Friction	F_s \le \mu_s F_N
Kinetic Friction	F_k = \mu_k F_N

Work and Energy

Work (W)	W = Fd \cos(\theta) (force * distance * cosine of the angle between them)
Kinetic Energy (KE)	KE = \frac{1}{2}mv^2 (1/2 * mass * velocity squared)
Potential Energy (PE) - Gravitational	PE = mgh (mass * gravity * height)
Potential Energy (PE) - Spring	PE = \frac{1}{2}kx^2 (1/2 * spring constant * displacement squared)
Power (P)	P = \frac{W}{\Delta t} (work / time)
Work-Energy Theorem	W_{net} = \Delta KE
Conservation of Mechanical Energy (no non-conservative forces)	KE_i + PE_i = KE_f + PE_f
Efficiency	\frac{W_{out}}{W_{in}}

Thermodynamics

Temperature

Heat (Q)

Internal

(c)

Energy (U)

Specific Heat

Latent Heat (L)

(T)

Thermodynamic Definitions

liquid).

Laws of Thermodynamics

A measure of the average kinetic energy of the particles in a system.	Zeroth Law	If two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with	
The transfer of energy between		each other.	
objects due to a temperature difference.	First Law	\Delta U = Q - W (change in internal energy = heat added - work done by	
The total energy of all the		the system)	
molecules within a substance.	Second The entropy of an isolated sy	The entropy of an isolated system	
The amount of heat required to raise the temperature of 1 gram of a substance by 1 degree	Law	always increases or remains constant. Heat cannot spontaneously flow from a cold body to a hot body.	
Celsius.	Third Law	The entropy of a system approaches a constant value as the temperature approaches absolute zero.	
The heat required to cause a phase change (e.g., solid to			

Heat Transfer

Conduction	Q = \frac{kA\Delta T t}{L} (heat transfer through a material)
Convection	Heat transfer by the movement of a fluid.
Radiation	Q = \epsilon \sigma A T^4 t (heat transfer by electromagnetic radiation)
Stefan- Boltzmann Constant	\sigma = 5.67 \times 10^{-8} W/m^2K^4

Electromagnetism

Electrostatics

Magnetism

Space

Coulomb's Law	F = k \frac{ q_1 q_2 }{r^2} (force between two point charges)	Magnetic Force on F = qvB a Moving Charge (charge magneti angle)	F = qvB \sin(\theta) (charge * velocity * magnetic field * sine of the	Faraday's Law	<pre>\mathcal{E} = -N \frac{\Delta \Phi_B}{\Delta t} (induced emf = - number of turns * change in magnetic flux (time)</pre>
Electric Field (E)	$E = frac{F}{q} (force per$		angle)		magnetic nux / time)
	unit charge)	Magnetic Force on a Current-Carrying Wire	Magnetic Force on F = ILB \sin(\theta)	Magnetic Flux (\Phi_B)	\Phi_B = BA \cos(\theta) (magnetic field * area * cosine of the angle)
Electric Potential (V)	V = \frac{PE}{q} (potential energy per unit charge)		(current * length * magnetic field * sine of the angle)		
Electric Potential	PE = aV	Magnetic Field due	ungio,		
Energy (PE)			B = \frac{\mu_0 I}{2 \pi r}		
Capacitance (C)	C = \frac{Q}{V} (charge /	Wire			
Voitage) Per	Permeability of Free	\mu_0 = 4\pi \times			

10^{-7} T \cdot m/A

Waves and Optics

Wave Properties

Wave Speed (v)	v = f\lambda (frequency * wavelength)
Period (T)	$T = frac{1}{f} (1 / frequency)$
Wave Number (k)	k = \frac{2\pi}{\lambda}

Optics	
Snell's Law	n_1 \sin(\theta_1) = n_2 \sin(\theta_2) (refractive index * sine of the angle)
Index of Refraction (n)	n = \frac{c}{v} (speed of light in vacuum / speed of light in the medium)
Critical Angle (\theta_c)	\sin(\theta_c) = \frac{n_2}{n_1} (for total internal reflection, n_1 > n_2)
Lens Equation	\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i} (focal length, object distance, image distance)
Magnification (M)	$M = - \frac{d_i}{d_0}$

Interference and Diffraction

Constructive	d \sin(\theta) = m \lambda
Interference	(path difference = integer
(Double Slit)	* wavelength)
Destructive Interference (Double Slit)	d \sin(\theta) = (m + \frac{1}{2}) \lambda