CHEAT SH

Mechanical Engineering Cheatsheet

A comprehensive cheat sheet covering essential formulas, concepts, and principles in mechanical engineering.

Thermodynamic Processes

Thermodynamics

Basic Concepts Zeroth If two systems are each in thermal equilibrium with a third system, then Law they are in thermal equilibrium with each other. First Law Energy cannot be created or destroyed, only converted from one form to another. $\Delta U = Q - W$ Second The total entropy of an isolated Law system can only increase over time. $\Delta S \ge 0$ Third Law As temperature approaches absolute zero, the entropy of a system approaches a minimum or zero. Enthalpy H = U + PV, where U is internal energy, $\mathsf{P}\xspace$ is pressure, and $\mathsf{V}\xspace$ is (H) volume. Specific The amount of heat required to raise Heat (c) the temperature of one unit mass of a substance by one degree. Q = mc∆T

Isothermal	Constant temperature. ΔT = 0, Q = W			
Adiabatic	No heat transfer. Q = 0, Δ U = -W			
Isobaric	Constant pressure. $\Delta P = 0, W = P\Delta V$			
Isochoric (Isometric)	Constant volume. $\Delta V = 0, W = 0, \Delta U = Q$			
Polytropic	Process described by PV^n = constant, where n is the polytropic index. W = (P2V2 - P1V1) / (1-n)			

Carnot Cycle	Theoretical thermodynamic cycle with the highest possible efficiency. Efficiency = 1 - (Tc/Th)
Otto Cycle	Idealized cycle for spark-ignition internal combustion engines. Efficiency = 1 - (1/r^(k-1))
Diesel Cycle	Idealized cycle for compression- ignition internal combustion engines. Efficiency = 1 - (1/r^(k-1)) * ((rc^k - 1) / (k*(rc-1)))

Fluid Mechanics

Fluid Properties

Density (ρ)	Mass per unit volume. ρ = m/V				
Specific Weight (y)	Weight per unit volume. γ = ρg				
Viscosity (µ)	Resistance to flow. $\tau = \mu(du/dy)$				
Kinematic Viscosity (ν)	Ratio of viscosity to density. ν = μ/ρ				
Surface Tension (σ)	Force per unit length acting at the interface between two fluids. F = σ L				

Fluid Statics

Pressure (P)	Force per unit area. P = F/A	
Hydrostatic Pressure	Pressure due to the weight of a fluid column. P = ρ gh	
Buoyancy	Upward force exerted by a fluid on an immersed object. Fb = ρVg	

Fluid Dynamics

Cycles

Continuity Equation	A1V1 = A2V2 (for incompressible fluids)
Bernoulli's Equation	P + (1/2)ρV^2 + ρgh = constant
Reynolds Number (Re)	Dimensionless number indicating whether flow is laminar or turbulent. Re = $(\rho VD)/\mu$

Solid Mechanics

Stress and Strain

Stress (σ)	Force per unit area. σ = F/A			
Strain (ε)	Deformation per unit length. ϵ = $\Delta L/L$			
Young's Modulus (E)	Measure of stiffness of a material. E = σ/ϵ			
Shear Stress (τ)	Stress parallel to the surface. τ = F/A			
Shear Strain (y)	Angular deformation. $\gamma = \Delta x/L$			
Shear Modulus (G)	Measure of a material's resistance to shear deformation. G = τ/γ			
Poisson's Ratio (ν)	Ratio of lateral strain to axial strain. ν = -ε_lateral/ε_axial			

Beams

Bending Stress (σ)	σ = My/I, where M is bending moment, y is distance from neutral axis, and I is moment of inertia.
Shear Stress in Beams (τ)	 τ = VQ/lb, where V is shear force, Q is first moment of area, l is moment of inertia, and b is width.
Deflection of Beams (δ)	Depends on loading and support conditions. Common formulas are available for various cases.

Torsion

Torsional	τ = Tρ/J, where T is torque, ρ is
Shear Stress	radial distance, and J is polar
(τ)	moment of inertia.
Angle of Twist (θ)	θ = TL/GJ, where L is length, G is shear modulus, and J is polar moment of inertia.

Dynamics and Vibrations

Kinematics		Kinetics		Vibrations	
Displacement (s)	Change in position. Measured in meters (m).	Newton's Second Law	F = ma, where F is force, m is mass, and a is acceleration.	Natural Frequency (ωn)	ωn = √(k/m), where k is spring stiffness and m is mass.
Velocity (v)	Rate of change of displacement. v = ds/dt. Measured in meters per	Work (W)	W = Fd cos(θ), where F is force, d is displacement, and θ is the	Damping Ratio (ζ)	ζ = c / (2√(mk)), where c is damping coefficient.
		angle between them.	Damped	ωd = ωn√(1 - ζ²)	
	second (m/s).	Kinetic	netic KE = (1/2)mv ² , where m is mass	Frequency (ωd)	
Acceleration (a)	Rate of change of velocity. a = dv/dt. Measured in meters per second squared (m/s²).	Energy (KE) and v is velocity.	and v is velocity.		
		Potential Energy (PE)	ntialPE = mgh, where m is mass, g isgy (PE)acceleration due to gravity, and his height.		
Uniform Acceleration Equations	v = u + at, s = ut + (1/2)at ² , v ² = u ² + 2as	55			
		Power (P)	P = W/t, where W is work and t is time. Also, P = Fv.		