
Neo4j Cypher Cheatsheet
A quick reference guide to Neo4j basics, data modeling concepts, and essential Cypher query language syntax and commands.

Neo4j Basics & Concepts

Core Concepts

Nodes: Represent entities. Can have properties

(key-value pairs) and labels (typed groups).

Relationships: Connect nodes. Always directed,

have a type, and can have properties.

Properties: Key-value pairs stored on nodes or

relationships. Values can be primitives (string,

number, boolean) or arrays of primitives.

Labels: Typed groups for nodes. A node can have

multiple labels. Used for indexing and constraints.

Relationship Types: Typed connections between

nodes. A relationship must have exactly one type.

Schema-Free: Neo4j is schema-flexible.

Properties and labels/types are not strictly

defined at creation but are typically enforced

with constraints.

Graph Structure: Data is stored as connected

nodes and relationships, optimizing for traversals.

Cypher: Neo4j’s declarative query language for

working with the graph.

Node Syntax

() An anonymous node.

(n) A node bound to variable

n .

(:Label) A node with a specific

label.

(n:Label) A node bound to variable

n with a specific label.

(n:Label:Label2) A node with multiple

labels.

({key: 'value'}) A node with properties.

(:Label {key: 'value',

num: 123})

A node with a label and

properties.

(n:Label {key:

'value'})

A node bound to n with

a label and properties.

Relationship Syntax

--> A directed relationship.

<-- A directed relationship

(reverse direction).

-- An undirected relationship

(not common in queries,

primarily for representation).

-[:TYPE]-> A relationship with a specific

type.

-[r:TYPE]-> A relationship bound to

variable r with a specific

type.

-[:TYPE|TYPE2]-

>

A relationship with one of

multiple types.

-[:TYPE {key:

'value'}]->

A relationship with a type and

properties.

-[:TYPE*]-> Variable length relationship (1

or more).

-[:TYPE*2..5]-> Variable length relationship (2

to 5 hops).

Graph Patterns

(a)-->(b) : Simple pattern matching two nodes

a and b connected by a directed relationship.

(a:Person)-[:KNOWS]->(b:Person) : Pattern

matching two Person nodes connected by a

KNOWS relationship.

(a:Movie {title: 'The Matrix'})<--

(:ACTED_IN)--(p:Person) : Pattern matching a

Movie node with a specific title connected by

an incoming ACTED_IN relationship to a

Person node p .

(p:Person)-[r:WORKS_AT]->(c:Company) WHERE

r.startDate < 2000 : Pattern matching a

Person and Company connected by a

WORKS_AT relationship, filtered by a relationship

property.

(a)-[*1..5]->(b) : Variable length path of 1 to

5 hops between a and b (type optional).

(a)-[:TYPE*]->(b) : Variable length path of 1 or

more hops of a specific type.

Multiple Patterns:

MATCH (p:Person)-[:LIVES_IN]->(c:City),

 (p)-[:WORKS_AT]->(co:Company)

RETURN p, c, co

Optional Match:

Returns persons even if they don’t have a

:LIVES_IN relationship.

OPTIONAL MATCH (p:Person)-[:LIVES_IN]->

(c:City)

RETURN p, c

Page 1 of 5 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1040-neo4j-cypher-cheatsheet
http://cheatsheetshero.com/user/all/1040-neo4j-cypher-cheatsheet
http://cheatsheetshero.com/user/all/1040-neo4j-cypher-cheatsheet
https://cheatsheetshero.com/

Essential Cypher Queries

Create Data

Create a node:

CREATE (p:Person {name: 'Alice', age: 30})

RETURN p

Create multiple nodes:

CREATE (:Movie {title: 'Inception'}),

 (:Movie {title: 'Interstellar'})

Create a relationship:

MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})

CREATE (a)-[:KNOWS {since: 2015}]->(b)

RETURN a, b

Create a node and relationship simultaneously:

CREATE (p:Person {name: 'Charlie'})-[:LIVES_IN]->(c:City {name:

'Paris'})

RETURN p, c

Create nodes with multiple labels:

CREATE (e:Employee:Person {name: 'Dave'})

RETURN e

Create a relationship with multiple properties:

MATCH (p:Person {name: 'Alice'}), (m:Movie {title: 'Inception'})

CREATE (p)-[:ACTED_IN {roles: ['Dom Cobb'], year: 2010}]->(m)

RETURN p, m

Create a variable-length relationship (rarely used in CREATE, more in

MATCH):

// Conceptually possible, but usually involves multiple simple

CREATEs

// or leveraging MERGE/MATCH to find existing nodes.

Match Data

Match all nodes:

MATCH (n)

RETURN n LIMIT 10

Match nodes with a specific label:

MATCH (p:Person)

RETURN p LIMIT 10

Match a node by property:

MATCH (p:Person {name: 'Alice'})

RETURN p

Match a node by property using WHERE:

MATCH (p:Person)

WHERE p.age > 25

RETURN p.name, p.age

Match a specific relationship type:

MATCH (a)-[:KNOWS]->(b)

RETURN a, b LIMIT 10

Match relationships with specific properties:

MATCH (a)-[r:KNOWS]->(b)

WHERE r.since = 2015

RETURN a.name, b.name, r.since

Match paths:

MATCH path = (a:Person)-[:KNOWS*..2]->(b:Person)

WHERE a.name = 'Alice'

RETURN path

Match nodes connected by any relationship type:

MATCH (a)-[r]->(b)

RETURN type(r), a.name, b.name LIMIT 10

Page 2 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Merge Data

Merge a node (create if not exists, find if exists):

MERGE (c:City {name: 'London'})

RETURN c

Merge a relationship (create if pattern not exists):

MATCH (a:Person {name: 'Alice'}), (c:City {name: 'London'})

MERGE (a)-[:LIVES_IN]->(c)

RETURN a, c

ON CREATE / ON MATCH clauses:

Set properties only if the node/relationship was created:

MERGE (p:Person {name: 'Bob'})

ON CREATE SET p.born = 1990

RETURN p

ON CREATE / ON MATCH clauses:

Set properties only if the node/relationship was matched:

MERGE (p:Person {name: 'Bob'})

ON MATCH SET p.lastSeen = timestamp()

RETURN p

Combined ON CREATE and ON MATCH:

MERGE (p:Person {name: 'Charlie'})

ON CREATE SET p.created = timestamp(), p.status = 'New'

ON MATCH SET p.updated = timestamp(), p.status = 'Existing'

RETURN p

Merge complex patterns:

MERGE (u:User {userId: 123})-[:BOUGHT]->(p:Product {productId:

456})

RETURN u, p

Using MERGE on relationship with properties:

MATCH (p1:Person {name: 'Alice'}), (p2:Person {name: 'Bob'})

MERGE (p1)-[k:KNOWS]->(p2)

ON CREATE SET k.since = 2023

ON MATCH SET k.strength = k.strength + 1

RETURN p1, p2, k

Merging multiple paths:

MERGE (a:Team {name: 'Red'}), (b:Team {name: 'Blue'})

MERGE (a)-[:RIVALRY]-(b)

RETURN a, b

Update & Delete Data

SET - Set or update

properties/labels.

Set a property:

MATCH (p:Person {name:

'Alice'})

SET p.age = 31

RETURN p

REMOVE - Remove

properties/labels.

Remove a property:

MATCH (p:Person {name:

'Alice'})

REMOVE p.age

RETURN p

Set multiple properties:

MATCH (p:Person {name:

'Bob'})

SET p += {city: 'New York',

zip: '10001'}

RETURN p

Remove multiple properties:

MATCH (p:Person {name:

'Bob'})

REMOVE p.city, p.zip

RETURN p

Set a label:

MATCH (p:Person {name:

'Charlie'})

SET p:Employee

RETURN p

Remove a label:

MATCH (p:Person:Employee

{name: 'Charlie'})

REMOVE p:Employee

RETURN p

Update relationship properties:

MATCH (:Person {name:

'Alice'})-[k:KNOWS]->(:Person

{name: 'Bob'})

SET k.strength = 10

RETURN k

Remove relationship properties:

MATCH (:Person {name:

'Alice'})-[k:KNOWS]->(:Person

{name: 'Bob'})

REMOVE k.since

RETURN k

DELETE - Delete nodes and

relationships.

Delete relationships (nodes remain):

MATCH (:Person {name:

'Alice'})-[k:KNOWS]->(:Person

{name: 'Bob'})

DELETE k

DETACH DELETE - Delete nodes and

their relationships.

Delete a node and its relationships:

MATCH (p:Person {name:

'Alice'})

DETACH DELETE p

Delete nodes based on a condition:

MATCH (p:Person)

WHERE p.age > 60

DETACH DELETE p

Delete all nodes and relationships:

Caution: This empties the database!

MATCH (n)

DETACH DELETE n

Page 3 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Return & Ordering

RETURN - Specify what to output.

Return nodes and relationships:

MATCH (p:Person)-[r:KNOWS]->

(f:Person)

RETURN p, r, f

ORDER BY - Sort results.

Order by node property

(ascending):

MATCH (p:Person)

RETURN p.name, p.age

ORDER BY p.age

Return specific properties:

Use AS for aliases.

MATCH (p:Person)

RETURN p.name AS Name, p.age

Order by node property

(descending):

MATCH (p:Person)

RETURN p.name, p.age

ORDER BY p.age DESC

Return distinct results:

MATCH (p:Person)-[:ACTED_IN]->

(m:Movie)

RETURN DISTINCT m.title

Order by multiple properties:

MATCH (p:Person)

RETURN p.name, p.age,

p.city

ORDER BY p.city, p.age

DESC

Return aggregated values (COUNT,

SUM, AVG, MIN, MAX, COLLECT, etc.):

MATCH (p:Person)

RETURN count(p) AS totalPeople

Ordering on aggregates:

MATCH (m:Movie)<-

[:ACTED_IN]-(p:Person)

RETURN m.title, count(p)

AS actorCount

ORDER BY actorCount DESC

SKIP & LIMIT - Pagination.

Skip first N results:

MATCH (p:Person)

RETURN p.name

ORDER BY p.name

SKIP 10

Limit results to N:

MATCH (p:Person)

RETURN p.name

ORDER BY p.name

LIMIT 5

Combine SKIP and LIMIT:

MATCH (p:Person)

RETURN p.name

ORDER BY p.name

SKIP 10 LIMIT 5

Return paths:

MATCH path = (a:Person)-

[:KNOWS*..2]->(b:Person)

RETURN path

Predicates & Functions

Comparison: = , <> , < , > , <= , >=

WHERE p.age > 30

Boolean: AND , OR ,

XOR , NOT

WHERE p.age > 30 AND

p.city = 'London'

Regular Expressions: =~

(Case-insensitive starts with ‘alice’)

WHERE p.name =~ '(?i)alice.*'

String Predicates: STARTS

WITH , ENDS WITH ,

CONTAINS

WHERE p.name STARTS

WITH 'A'

List Predicates: IN

WHERE p.city IN ['Paris', 'London']

Null Check: IS NULL , IS

NOT NULL

WHERE p.age IS NOT

NULL

Existence Check: EXISTS()

WHERE EXISTS(p.email)

Relationship type:

type(r)

MATCH (a)-[r]->(b)

WHERE type(r) =

'FRIEND'

RETURN a, b

Node labels: LABELS(n)

MATCH (n)

WHERE 'Person' IN labels(n)

RETURN n

Path length:

length(path)

MATCH path=(a)-[*]->

(b)

WHERE length(path) >

3

RETURN path

Functions: keys() , properties() ,

size() , id() , timestamp() ,

datetime() , etc.

Get properties:

MATCH (p:Person {name: 'Alice'})

RETURN properties(p)

Get keys:

Get ID:

MATCH (p:Person

{name: 'Alice'})

RETURN keys(p)

MATCH (p:Person

{name: 'Alice'})

RETURN id(p)

Aggregating Functions: count() , sum() ,

avg() , min() , max() , collect() ,

stdev() , percentileCont() , etc.

Count all nodes:

MATCH (n)

RETURN count(n)

Collect properties into a

list:

MATCH (p:Person)

RETURN

collect(p.name) AS

names

Page 4 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Constraints & Indexes

Constraints enforce rules on data, like uniqueness.

Indexes speed up lookups on node/relationship properties.

Create a uniqueness constraint (also creates an index):

CREATE CONSTRAINT ON (p:Person) ASSERT p.email IS UNIQUE

Create a node property existence constraint:

CREATE CONSTRAINT ON (p:Person) ASSERT EXISTS(p.name)

Create a relationship property existence constraint:

CREATE CONSTRAINT ON ()-[r:KNOWS]-() ASSERT EXISTS(r.since)

Create a composite uniqueness constraint:

CREATE CONSTRAINT ON (p:Product) ASSERT (p.id, p.version) IS

UNIQUE

Create a B-tree index on a node property:

CREATE INDEX ON :Movie(title)

Create a B-tree index on a relationship property:

CREATE INDEX ON :LIKES(rating)

Drop a constraint:

DROP CONSTRAINT ON (p:Person) ASSERT p.email IS UNIQUE

Drop an index:

DROP INDEX ON :Movie(title)

Show constraints:

SHOW CONSTRAINTS

Show indexes:

SHOW INDEXES

Page 5 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

