
YAML Essentials Cheatsheet
A concise guide to the YAML data serialization format, covering syntax, data types, collections, and advanced features for configuration files and

data exchange.

YAML Basics & Syntax

YAML Data Types (Scalars)

Fundamental Syntax Rules

Indentation

Uses spaces for nesting, no tabs.

Consistent indentation is crucial.

Comments

Start with # .

Can be on their own line or at the end of a line.

Key-Value Pairs

Syntax: key: value

Key must be unique within a map.

Space after the colon is required.

Lists (Sequences)

Start with - followed by a space.

Items are at the same indentation level.

Maps (Mappings)

Represent key-value pairs.

Keys are unique strings by default.

Nested structures are created via indentation.

Case Sensitivity

Keys and scalar values are case-sensitive.

Document Separators

--- Separates directives from the document.

... Indicates the end of a document.

Root Element

A YAML file can be a single scalar, list, or map.

Reserved Characters

: # - ? , [] { } @ * & ! | > ' " %

These may need quoting or escaping depending on context.

Whitespace

Significant for indentation.

Trailing whitespace should be avoided.

Example Structure:

person:

 name: Alice # This is a comment

 age: 30

 city: New York

Example List:

- item 1

- item 2

- item 3

Scalar Types & Notation

Plain Scalars (Most Common)

Strings without quotes.

Numbers, booleans, null, dates/times are often parsed automatically.

Quoted Scalars

Single ('...') or Double ("...").

Used for strings containing special characters or for

explicit string typing.

Double quotes allow escape sequences (\n , \t , etc.).

Numeric Types

Integers: 123 , +45 , -67

Floats: 1.23 , -4.5e+6 , .inf , -.inf , .nan

Boolean Types

Represent truth values.

Common representations: true , false , True ,

False , on , off , yes , no .

Null Type

Represents a null or empty value.

Common representations: null , Null , NULL , ~ , '' (empty string can often be

interpreted as null depending on context/loader).

String Examples:

plain: This is a plain string

single_quoted: 'This is a string with spaces'

double_quoted: "This string includes a newline\nand

quotes \""

empty_string: ""

Page 1 of 5 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
https://cheatsheetshero.com/

YAML Collections (Lists & Maps)

Multi-line Strings

Literal Block (|): Preserves newlines and leading indentation of subsequent lines.

Folded Block (>): Folds newlines into spaces, preserving blank lines.

Indicator (- or +): Controls whether trailing newlines are kept (+) or stripped (-).

Default is stripped.

Literal Block Example:

poem: |

 This is the first line.

 This is the second line.

 This is the third line.

Folded Block Example:

quote: >

 This is a very long

 sentence that should

 be folded into a

 single line.

Explicit Typing (Tags)

Force a scalar to be a specific type.

Syntax: !!type value

string_int: !!str 123 # Forces '123' to be a string

int_string: !!int "123" # Forces "123" to be an

integer

Date & Time Types

YAML has standard representations for dates and times.

!!timestamp is the common tag, often inferred.

date: 2023-10-27

datetime: 2023-10-27T10:00:00Z

datetime_offset: 2023-10-27 10:00:00-05:00

Binary Data

Represented using base64 encoding.

Requires the !!binary tag.

data: !!binary |

 R0lGODlhDAAMAKIFAOCwsP////8yMj

 IyAAAAAAACwAAAAADAAMAAACDpSP

 aLnjjmoCNloAAKeWwO

Lists (Sequences)

Block Style List

Each item starts with - followed by a space.

Items are at the same indentation level.

Items can be scalars, maps, or other lists.

Example Block List:

fruits:

 - Apple

 - Banana

 - Orange

Nested Block Lists

Achieved through consistent indentation.

Example Nested Lists:

matrix:

 - - 1

 - 2

 - - 3

 - 4

Flow Style List

Similar to JSON arrays.

Uses [] with items separated by , .

Example Flow List:

colors: [red, green, blue]

List Containing Maps

Common structure for lists of objects.

Example List of Maps:

people:

 - name: Alice

 age: 30

 - name: Bob

 age: 25

Empty List

Represented by just [] .

Example Empty List:

empty_items: []

Page 2 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced YAML Features

Using ? and : in Lists (Less Common)

YAML allows complex keys using ? .

- ? key1

 : value1

 ? key2

 : value2

Combined List/Map Structure:

config:

 users:

 - id: 1

 name: UserA

 - id: 2

 name: UserB

 settings:

 theme: dark

 language: en

Maps (Mappings / Dictionaries)

Block Style Map

Each key-value pair is on a new line, indented under the parent map.

Syntax: key: value

Example Block Map:

user:

 name: Alice

 age: 30

 isStudent: false

Nested Block Maps

Achieved by indenting child maps under their parent keys.

Example Nested Maps:

company:

 name: Example Corp

 address:

 street: 123 Main St

 city: Anytown

Flow Style Map

Similar to JSON objects.

Uses {} with key-value pairs separated by , .

Syntax: { key1: value1, key2: value2 }

Example Flow Map:

settings: { theme: dark, language: en }

Maps Containing Lists

A common pattern to group related items under a key.

Example Map with List:

config:

 servers:

 - prod.example.com

 - dev.example.com

 ports: [80, 443]

Complex Keys (?)

Any value can be a map key if denoted with ? .

? - address

 - shipping

: This is the shipping address

Empty Map

Represented by just {} .

Example Empty Map:

empty_settings: {}

Combining Styles

Block and Flow styles can be mixed within a document.

Flow style can be useful for short collections.

Anchors and Aliases

Anchors (&)

Mark a node (scalar, list, map) for future reference.

Syntax: &anchor_name value

Aliases (*)

Reference a previously defined anchor.

Syntax: *anchor_name

The alias takes on the value/structure of the anchored node.

Page 3 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Usage:

Avoid repetition of data.

Define templates or common configurations.

Example Basic Usage:

default_settings: &defaults

 timeout: 30

 retries: 3

service1:

 <<: *defaults # Merge defaults into service1

 url: http://svc1.example.com

service2:

 <<: *defaults # Merge defaults into service2

 url: http://svc2.example.com

 timeout: 60 # Override default timeout

Merging (<<)

Special syntax used with aliases to merge the contents of a map anchor into the

current map.

Aliases are processed first, then subsequent keys in the current map override keys

from the alias.

Anchors for Lists/Scalars:

Can anchor non-map nodes too.

common_list: &list_items

 - item A

 - item B

list1: *list_items

list2:

 - item C

 - *list_items # Adds the list as a sub-list

Best Practice:

Place anchors near the top of the document or in a logical section.

Caution:

Circular references using anchors/aliases are usually disallowed

by parsers.

Tags

Purpose:

Explicitly define the data type or structure of a node.

Overrides the default type inferred by the parser.

Syntax:

!tag_name value

Can be applied to any node (scalar, list, map).

Standard YAML Tags:

Prefixed with !! (e.g., !!str , !!int , !!map , !!seq , !!bool , !!null ,

!!float , !!timestamp , !!binary).

These are usually inferred, but can be explicit.

Example Standard Tag:

price: !!float "10.99" # Ensures it's a float, even

if quoted

is_valid: !!bool "no" # Ensures it's a boolean

Custom Tags:

Define application-specific types or objects.

Syntax: !your_tag_name value

The parser needs to know how to handle the custom tag.

Example Custom Tag:

!!person

name: Alice

age: 30

Local Tags:

Start with ! followed by non-punctuation, typically !tag or !prefix!tag .

Example: !MyObject { key: value }

Global Tags:

Start with !! (standard) or a URI prefix (e.g.,

!yaml!tag:yaml.org,2002:str).

Directives (less common for users):

%YAML - specifies YAML version.

%TAG - associates a URI prefix with a handle.

%TAG !ex! tag:example.com,2023:

--- # start of document

user: !ex!User # refers to tag:example.com,2023:User

 id: 123

Tagging Anchored Nodes:

The tag applies to the node before the anchor or alias.

Page 4 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Tips, Tricks, and Best Practices

Multiple Documents

Purpose:

Store multiple distinct YAML documents within a single file.

Useful for config files, log streams, etc.

Separator (---)

Marks the beginning of a new document.

Must be on a line by itself.

End Marker (...)

Optionally marks the end of a document.

Useful to signal the end of the last document without a subsequent --- .

Example Multiple Documents:

Document 1: User Config

user:

 name: Bob

 id: 456

Document 2: App Settings

app:

 theme: light

 version: 1.0

...

Reading Multiple Documents

YAML parsers typically offer functions to load all documents from a stream or

file.

Common Use Cases:

Configuration files for complex systems (e.g., Kubernetes).

Data exchange protocols.

Each document is independent

Anchors and aliases defined in one document are typically not accessible in

subsequent documents (parser dependent, but standard behavior).

Directives

Directives (%YAML , %TAG) apply only to the next document,

unless the %YAML directive changes the version rules.

General Guidelines

Use Spaces, Not Tabs

Absolutely critical for correct parsing. Most editors can be configured to

insert spaces for tabs.

Consistent Indentation

Stick to 2 or 4 spaces for indentation throughout your file.

Quote Strings Wisely

Quote strings if they:

Start with a special character (- , : , ? , etc.).

Contain internal special characters.

Look like numbers, booleans, or null ('123' , 'yes' , 'null').

Keep Lines Readable

Avoid overly long lines.

Use multi-line string syntax (| , >) for longer text blocks.

Comments are Your Friend

Explain complex structures, default values, or the purpose of sections.

Avoid Trailing Whitespace

Can sometimes interfere with parsing, especially with multi-line strings.

Use Anchors/Aliases for Repetition

Increases readability and reduces file size for repeated blocks of data.

Prefer Block Style for Structure

Block style (indented) is generally more readable for complex nested

structures than flow style.

Use Flow Style for Simple Collections

Short lists ([a, b, c]) or maps ({key: value}) can be more concise

in flow style.

Validate Your YAML

Use online validators or command-line tools (yamllint , yq) to check

syntax.

Common Pitfalls

Using Tabs for Indentation: Leads to parsing errors. Always use spaces.

Inconsistent Indentation: Mixing space counts (e.g., 2 spaces here, 4 spaces there) breaks structure.

Forgetting Space After Colon/Dash: key:value or -item is invalid. Needs space: key: value , - item .

Unquoted Strings: Values like yes , no , on , off , numbers, and dates can be auto-converted unexpectedly if not quoted when intended as strings.

Special Characters: Forgetting to quote or escape strings containing : , - , * , & , ? , etc.

Complex Keys: Using non-string keys in maps without the ? explicit notation (though many parsers handle simple non-string keys).

Unexpected Type Coercion: YAML’s flexibility in type inference can sometimes lead to values being interpreted differently than intended (e.g., 1e2 as a float,

010 as an octal integer). Use explicit tags (!!str , !!int) if needed.

Page 5 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

