
Scripting Utilities Cheatsheet
A comprehensive cheat sheet covering various scripting utilities, including `xargs`, `find`, `sed`, `awk`, `grep`, and `jq`. This cheat sheet provides a quick

reference to essential commands, options, and examples to help you automate tasks and manipulate data efficiently.

xargs & find

sed

xargs Basics

xargs Build and execute command lines

from standard input.

Takes input from stdin and converts it

to arguments for a command.

xargs

[option

s]

[comman

d]

General syntax. If command is

omitted, xargs defaults to

/bin/echo .

-n

max-

args

Use at most max-args arguments

per command line.

-I

replace

-str

Replace occurrences of replace-

str in the initial-arguments with

names read from standard input. Also

implies -x and -L 1 .

-L

max-

lines

Use at most max-lines non-blank

input lines per command line.

-d

delimit

er

Input items are terminated by the

specified character. Useful when

filenames contain spaces.

find Basics

find

[path]

[expressi

on]

Search for files in a directory

hierarchy.

-name

pattern

Base of file name (the path with the

leading directories removed)

matches shell pattern pattern .

-type

type

File is of type type :

f : regular file

d : directory

l : symbolic link

-mtime

n

File’s data was last modified n *24

hours ago.

-exec

command

{} +

Execute command ; all matched files

will be appended to the end of the

command.

-delete Delete files; be careful when using

this option.

Combining xargs and find

Common use case: using find to locate files

and xargs to process them.

This command finds all .txt files in the current

directory and its subdirectories, and then counts

the number of lines in each file using wc -l . -

print0 and -0 handle filenames with spaces

correctly.

find . -name "*.txt" -print0 | xargs -0

wc -l

sed Basics

sed 'command'

inputfile

Apply command to each line of inputfile . Output to

standard output.

sed -i

'command'

inputfile

Modify inputfile in-place.

s/pattern/repl

acement/flags

Substitute pattern with replacement . flags can

be g (global), i (case-insensitive), etc.

[address]comma

nd

Apply command only to lines matching address .

Address can be a line number, a regex pattern, or a

range.

d Delete line.

p Print line. (Often used with -n to suppress default

printing).

sed Examples

Replace all occurrences of foo with bar in file.txt and print to

standard output.

sed 's/foo/bar/g' file.txt

Replace all occurrences of foo with bar in file.txt in-place.

sed -i 's/foo/bar/g' file.txt

Delete all lines starting with # .

sed '/^#/d' file.txt

Print only lines that match pattern .

sed -n '/pattern/p' file.txt

Delete lines 2 through 5.

sed '2,5d' file.txt

Delete the last line.

sed '$d' file.txt

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
https://cheatsheetshero.com/

awk

grep & jq

awk Basics

awk 'pattern {

action }' file

Process file line by line. If pattern matches,

execute action .

BEGIN { action } Execute action before processing any lines.

END { action } Execute action after processing all lines.

$0 The entire line.

$1, $2, ... The first, second, etc. field (column) in the line.

NF Number of fields in the current line.

awk Examples

Print the first field of each line.

awk '{ print $1 }' file.txt

Print the last field of each line.

awk '{ print $NF }' file.txt

Print all lines that match pattern .

awk '/pattern/ { print }' file.txt

Print all lines where the first field is greater than 10.

awk '$1 > 10 { print }' file.txt

Calculate the sum of the first field of all lines.

awk 'BEGIN { sum = 0 } { sum += $1 } END { print sum }' file.txt

Print the second field of each line in a CSV file, using , as the field

separator.

awk -F',' '{ print $2 }' file.csv

grep Basics

grep

[options]

pattern

[file]

Search for pattern in file . If

no file is specified, grep searches

standard input.

-i Case-insensitive search.

-v Invert match. Select non-

matching lines.

-r or -R Recursive search.

-n Print line number with output

lines.

-c Print only a count of matching

lines per file.

grep Examples

Print all lines in file.txt that contain foo .

grep 'foo' file.txt

Print all lines in file.txt that contain foo ,

case-insensitive.

grep -i 'foo' file.txt

Print all lines in file.txt that do not contain

foo .

grep -v 'foo' file.txt

Recursively search for foo in all files in the

current directory.

grep -r 'foo' .

Print all lines in file.txt that contain foo ,

along with their line numbers.

grep -n 'foo' file.txt

Print the number of lines in file.txt that

contain foo .

grep -c 'foo' file.txt

jq Basics

jq [options]

'filter'

[file]

JSON processor. If no file

specified, reads from stdin.

. The identity filter. Outputs

the input as is.

.key Access the value associated

with the key key .

.[] Access all elements in an

array.

| Pipe filters.

--raw-output

or -r

Output raw strings, not

JSON.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

jq Examples

Pretty-print the JSON in data.json .

jq '.' data.json

Extract the value associated with the key name .

jq '.name' data.json

Extract all elements from the users array.

jq '.users[]' data.json

Extract the name field from each element in the

users array.

jq '.users[].name' data.json

Extract the age from each element of the top-

level array.

jq '[.[] | .age]' data.json

Fetch data from an API and extract the title

field from each element in the resulting array.

curl -s https://api.example.com/data |

jq '.[] | .title'

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

