

Statistics Cheat Sheet

A quick reference guide covering fundamental statistical concepts, formulas, and distributions. This cheat sheet provides a concise overview for students, researchers, and data analysts.

Descriptive Statistics

Measures of Central Tendency

Mean	Average of all values: \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}
Median	Middle value when data is ordered. If n is even, average of the two middle values.
Mode	Most frequent value. A dataset can have multiple modes or no mode.
Weighted Mean	Average where each data point contributes unequally: \frac{\sum_{i=1}^{n} w_i x_i} {\sum_{i=1}^{n} w_i}

Measures of Dispersion

Range	Difference between the maximum and minimum values: Range = max(x_i) - min(x_i)
Variance	Average squared difference from the mean:
	Sample Variance: $s^2 = \frac{\sin\{\sum_{i=1}^n \{n\} (x_i - \frac{x})^2\}\{n-1\}}$
	Population Variance: \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}
Standard Deviation	Square root of the variance:
Deviation	Sample Standard Deviation: s = \sqrt{s^2}
	Population Standard Deviation: \sigma = \sqrt{\sigma^2}
Coefficient of Variation	Relative measure of dispersion: CV = \frac{\sigma}{\mu} (for population), CV = \frac{s} {\bar{x}} (for sample)
Interquartile Range (IQR)	The difference between the 75th percentile (Q3) and the 25th percentile (Q1): IQR = Q3 - Q1

Measures of Shape

Skewness	Measure of asymmetry of the distribution. Positive skew (right-skewed) indicates a longer tail on the right side. Negative skew (left-skewed) indicates a longer tail on the left side. \text{Skewness} = \\frac{\\sum_{i=1}^{n} (x_i - \\bar{x})^3}{n s^3}
Kurtosis	Measure of the 'tailedness' of the distribution. High kurtosis indicates heavy tails (more outliers). Low kurtosis indicates light tails. \text{Kurtosis} = \\frac{\\sum_{i=1}^{n} (x_i - \\bar{x})^4}{n s^4} - 3

Probability

Basic Probability Concepts

Probability of an Event	P(A) = \frac{\text{Number of favorable outcomes}} {\text{Total number of possible outcomes}}
Complement Rule	P(A') = 1 - P(A)
Addition Rule	$P(A \setminus B) = P(A) + P(B) - P(A \setminus B)$
Conditional Probability	$P(A B) = \frac{P(A \setminus B)}{P(B)}$
Multiplication Rule	$P(A \setminus B) = P(A B)P(B) = P(B A)P(A)$
Independent Events	If A and B are independent: $P(A \setminus Cap B) = P(A)P(B)$, and $P(A B) = P(A)$

Discrete Probability Distributions

Bernoulli Distribution	Probability of success (p) or failure (1-p) in a single trial.
	$P(X=x) = p^x (1-p)^{(1-x)},$ where x = 0 or 1
Binomial Distribution	Number of successes in n independent trials.
	$P(X=k) = \lambda (1-p)^{(n-k)}$
Poisson Distribution	Number of events in a fixed interval of time or space.
	$P(X=k) = \frac{\alpha^k e^{-\beta}}{\lambda^k e^{-\beta}}$
Geometric Distribution	Number of trials until the first success.
	$P(X=k) = (1-p)^{k-1} p$

Continuous Probability Distributions

Uniform Distribution	Probability is constant over a given interval [a, b].
	$f(x) = \frac{1}{b-a} \text{ for a } x \le b$
Normal Distribution	Bell-shaped curve, defined by mean (\mu) and standard deviation (\sigma).
	f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x- \mu)^2}{2\sigma^2}}
Exponential	Time until an event occurs.
Distribution	$f(x) = \lambda e^{-\lambda x}$ for x \ge 0

Page 1 of 2 https://cheatsheetshero.com

Inferential Statistics

Confidence Intervals

General Form	Estimate \pm (Critical Value * Standard Error)
CI for Population Mean (\mu) with known \sigma	\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
CI for Population Mean (\mu) with unknown \sigma	\bar{x} \pm t_{\alpha/2, n- 1} \frac{s}{\sqrt{n}}
CI for Population Proportion (p)	\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1- \hat{p}))}{n}}

Hypothesis Testing

Null Hypothesis (H ₀)	Statement being tested.
Alternative Hypothesis (H ₁)	Statement to be supported if H_0 is rejected.
Test Statistic	Value calculated from sample data to test the hypothesis.
P-value	Probability of observing a test statistic as extreme as, or more extreme than, the one computed, assuming H_0 is true.
Significance Level (\alpha)	Probability of rejecting H_0 when it is true (Type I error).
Decision Rule	If p-value \le \alpha, reject H ₀ . Otherwise, fail to reject H ₀ .

Common Hypothesis Tests

Z-test	Testing population mean with known \sigma or large sample size. z = \frac{\bar{x} - \mu_0} {\sigma/\sqrt{n}}
t-test	Testing population mean with unknown \sigma and small sample size. $t = \frac{\hrac}{\hrac} - \mu_0}{s/\hrac}$
Chi- Square Test	Testing association between categorical variables. \chi^2 = \sum \frac{(O_i - E_i)^2}{(E_i)}

Regression Analysis

Simple Linear Regression

Regression Equation	y = \beta_0 + \beta_1 x + \epsilon
Estimating Coefficients	\hat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})} {\sum_{i=1}^{n} (x_i - \bar{x})^2} \hat{\beta_0} = \bar{y} - \hat{\beta_1} \bar{x}
Coefficient of Determination (R²)	Proportion of variance in dependent variable explained by the independent variable. R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}
SSR, SSE, SST	Sum of Squares Regression (SSR), Sum of Squares Error (SSE), Total Sum of Squares (SST)
	$SST = \sum (y_i - \beta_y)^2$ $SSE = \sum (y_i - \beta_y)^2$ $SSR = \sum (\lambda_y)^2$ $\beta_y)^2$

Multiple Linear Regression

Regression Equation	y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + + \beta_p x_p + \epsilon
Adjusted R ²	Adjusts R ² for the number of predictors in the model.
	$R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-p-1}$

Assumptions of Linear Regression

- 1. **Linearity:** The relationship between the independent and dependent variables is linear.
- 2. **Independence:** The errors are independent of each other.
- 3. **Homoscedasticity:** The errors have constant variance.
- 4. **Normality:** The errors are normally distributed.