Geometry Cheatsheet

A quick reference guide to basic geometric concepts, formulas, and theorems, covering areas, volumes, and angle relationships.

Basic Shapes & Formulas

CHEAT

2D Shapes: Area & Perimeter

Square Area: s is side length	$A = s^2$
Perimeter: s is side length	P = 4s
Rectangle Area: 1 is length, w is width	A = lw
Perimeter: 1 is length, w is width	P=2l+2w
Triangle Area: b is base, h is height	$A=rac{1}{2}bh$
Circle Area: r is radius	$A = \pi r^2$
Circumference: r is radius	$C = 2\pi r$
Parallelogram Area: b is base, h is height	A = bh

Angles and Lines

Angle Relationships Lines Complementary Angles: Two angles whose measures add up to 90 degrees. Parallel Lines: Lines that never intersect and have the same slope. Supplementary Angles: Two angles whose measures add up to 180 degrees. slopes that are negative reciprocals of each other. Vertical Angles: Angles opposite each other when two lines intersect; they are congruent. Transversal: A line that intersects two or more other lines. Adjacent Angles: Angles that share a common vertex and side but do not (change in y divided by change in x). overlap. Corresponding Angles: Angles in the same relative position when a transversal intersects two parallel lines; they are congruent. Alternate Interior Angles: Angles on opposite sides of the transversal and inside the parallel lines; they are congruent. Alternate Exterior Angles: Angles on opposite sides of the transversal and outside the parallel lines; they are congruent.

Triangles

Types of Triangles

Equilateral Triangle: A triangle with all three sides equal in length and all three angles equal to 60 degrees.	Sum of Angles: The sum of the interior angles in any triangle is always equal to 180 degrees.	$A + B + C = 180^{\circ}$	
Isosceles Triangle: A triangle with two sides equal in length and two angles equal in measure.	Pythagorean Theorem: In a right triangle, the square of the length of the hypotenuse (the	$a^2 + b^2 = c^2$	
Scalene Triangle: A triangle with all three sides of different lengths and all three angles of different measures.	side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.		
Right Triangle: A triangle with one angle equal to 90 degrees.	Triangle Inequality Theorem: The sum of the	a + b > c, a + c > b, b + c > a	
Acute Triangle: A triangle with all three angles less than 90 degrees.	lengths of any two sides of a triangle must be		
Obtuse Triangle: A triangle with one angle greater than 90 degrees.	greater than the length of the third side.		
	Area of a Triangle using Trigonometry: Area using sine of an angle.	$A = \frac{1}{2}ab\sin(C)$	

3D Shapes: Volume & Surface Area

Cube Volume: s is side length	$V = s^3$
Surface Area: s is side length	$SA = 6s^2$
Rectangular Prism Volume: 1 is length, w is width, h is height	V = lwh
Surface Area: 1 is length, w is width, h is height	SA = 2(lw + lh + wh)
Sphere Volume: r is radius	$V=rac{4}{3}\pi r^3$
Surface Area: r is radius	$SA = 4\pi r^2$
Cylinder Volume: r is radius, h is height	$V = \pi r^2 h$
Surface Area: r is radius, h is height	$SA=2\pi rh+2\pi r^2$

Perpendicular Lines: Lines that intersect at a 90-degree angle and have

Slope: The measure of the steepness of a line, calculated as rise over run

Triangle Properties

Circles

Circle Terminology

Circle Formulas

Radius: The distance from the center of the circle to any point on the circle.	Ci
Diameter: The distance across the circle through the center; it is twice the	Ar
radius.	Ar
Circumference: The distance around the circle.	Ar
Chord: A line segment connecting two points on the circle.	
Tangent: A line that touches the circle at exactly one point.	
Secant: A line that intersects the circle at two points.	
Arc: A portion of the circumference of a circle.	
Sector: A region bounded by two radii and an arc of the circle.	

Circumference:	$C = 2\pi r$
Area:	$A = \pi r^2$
Arc Length: \theta is the central angle in radians.	$s = r \theta$
Area of a Sector: ()theta is the central angle in radians.	$A=rac{1}{2}r^2 heta$