

Linear Algebra Cheatsheet

A concise reference for key concepts, formulas, and operations in linear algebra. This cheat sheet covers vectors, matrices, linear transformations, and more, providing a quick guide for students, engineers, and researchers.

Subspaces

Vectors and Spaces

Basic Vector Operations

Vector Addition	\mathbf{u} + mathbf{v} = (u_1 + v_1, u_2 + v_2,, u_n + v_n)
Scalar Multiplication	cmathbf{u} = (cu_1, cu_2,, cu_n)
Dot Product	\mathbf{u} cdot mathbf{v} = u_1v_1 + u_2v_2 + + u_nv_n
Vector Norm (Magnitude)	\IVert mathbf{u} Vert = sqrt{u_1^2 + u_2^2 + + u_n^2}
Cross Product (3D)	\mathbf{u} imes mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)
Unit Vector	\hat{mathbf{u}} = \frac{mathbf{u}}{\IVert mathbf{u} Vert}

Vector Spaces

Vector Space Axioms:

A set V is a vector space over a field F if it satisfies the following axioms for all \mathbf{u}, \mathbf{v}, \mathbf{w} \in V and c, d \in F:

- \mathbf{u} + \mathbf{v} \in V (Closure under addition)
- 2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} (Commutativity of addition)
- 3. (\mathbf{u} + \mathbf{v}) + \mathbf{w} =
 \mathbf{u} + (\mathbf{v} + \mathbf{w})
 (Associativity of addition)
- There exists a zero vector \mathbf{0} \in V such that \mathbf{u} + \mathbf{0} = \mathbf{u} (Existence of additive identity)
- For each \mathbf{u} \in V, there exists -\mathbf{u} \in V such that \mathbf{u} + (-\mathbf{u}) = \mathbf{0} (Existence of additive inverse)
- c\mathbf{u} \in V (Closure under scalar multiplication)
- 7. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v} (Distributivity of scalar multiplication over vector addition)
- (c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} (Distributivity of scalar multiplication over field addition)
- 9. c(d\mathbf{u}) = (cd)\mathbf{u}
 (Compatibility of scalar multiplication with
 field multiplication)
- 1\mathbf{u} = \mathbf{u} (Identity element of scalar multiplication)

•		
Definition	A subset W of a vector space V is a subspace if it is itself a vector space under the same operations defined on V.	
Conditions for a Subspace	To prove W is a subspace of V, show:	
	 W is non-empty (i.e., 0 \in W). 	
	 W is closed under addition: If \mathbf{u}, \mathbf{v} \in W, then \mathbf{u} + \mathbf{v} \in W. 	
	 W is closed under scalar multiplication: If \mathbf{u} \in W and c is a scalar, then c\mathbf{u} \in W. 	
Examples	 The set containing only the zero vector, {0}, is a subspace. 	
	• The entire vector space V is a subspace of itself.	
	 A line through the origin in \mathbb{R}^2 is a subspace of \mathbb{R}^2. 	

Matrices

Basic Matrix Operations

Matrix Addition	(A + B)_{ij} = A_{ij} + B_{ij} (element-wise addition)
Scalar Multiplication	(cA)_{ij} = c(A_{ij}) (multiply each element by the scalar)
Matrix Multiplication	(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj} (row i of A times column j of B)
Transpose	(A^T)_{ij} = A_{ji} (swap rows and columns)
Trace	\text{tr}(A) = \sum_{i=1}^{n} A_{ii} (sum of diagonal elements)
Determinant	\det(A) (a scalar value that can be computed recursively or by row reduction)
Inverse	A^{-1} (a matrix such that AA^{-1} = A^{-1}A = I, where I is the identity matrix)

Special Matrices

- Identity Matrix (I): A square matrix with 1s on the main diagonal and Os elsewhere.
- Zero Matrix: A matrix with all elements equal to 0.
- **Diagonal Matrix**: A square matrix with nonzero elements only on the main diagonal.
- **Symmetric Matrix**: A square matrix A such that A = A^T.
- Skew-Symmetric Matrix: A square matrix A such that A = -A^T.
- Orthogonal Matrix: A square matrix Q such that Q^TQ = QQ^T = I.

Matrix Properties

Associativity	(AB)C = A(BC)
Distributivity	A(B + C) = AB + AC $(A + B)C = AC + BC$
Scalar Multiplication	c(AB) = (cA)B = A(cB)
Transpose Properties	(A + B)^T = A^T + B^T (cA)^T = cA^T (AB)^T = B^TA^T
Inverse Properties	(A^{-1})^{-1} = A (AB)^{-1} = B^{-1}A^{-1}
Determinant Properties	\det(AB) = \det(A)\det(B) \det(A^T) = \det(A) \det(A^{-1}) = \frac{1} {\det(A)}

Linear Transformations

Definition and Properties

Definition	A linear transformation T: V \to W is a function between vector spaces V and W that preserves vector addition and scalar	Ker Spa Ima
Properties	1. T(\mathbf{u} + \mathbf{v})	(Ra
	= T(\mathbf{u}) + T(\mathbf{v}) for all \mathbf{u}, \mathbf{v} \in V.	Rar Nu The
	 T(c\mathbf{u}) = cT(\mathbf{u}) for all \mathbf{u} \in V and scalar c. 	
Zero Vector	T(0 _V) = 0 _W, where 0 _V and 0 _W are the zero vectors in V and W, respectively.	
Linear Combination	$T(c_1 mathbf{v}_1 + c_2 mathbf{v}_2 + + c_n mathbf{v}_n) = c_1T(mathbf{v}_1) + c_2T(mathbf{v}_2) + + c_nT(mathbf{v}_n)$	

Kernel and Image

Kernel (Null Space)	\text{ker}(T) = {\mathbf{v} \in V : T(\mathbf{v}) = 0 _W}. The kernel is a subspace of V.
lmage (Range)	\text{im}(T) = {T(\mathbf{v}) : \mathbf{v} \in V}. The image is a subspace of W.
Rank- Nullity Theorem	\dim(\text{ker}(T)) + \dim(\text{im}(T)) = \dim(V)

Matrix Representation

Diagonalization

Given a linear transformation T: V \to W, and bases B = {\mathbf{v}_1, ..., \mathbf{v}_n} for V and C = {\mathbf{w}_1, ..., \mathbf{w}_m} for W, the matrix representation of T with respect to B and C is the m \times n matrix A such that:

 $[T(\mathbf{wthbf}_v)]_C = A[\mathbf{wthbf}_v]_B$

where [\mathbf{v}]_B and [T(\mathbf{v})]_C are the coordinate vectors of $mathbf{v}$ and T(\mathbf{v}) with respect to the bases B and C, respectively.

The columns of A are the coordinate vectors of T(\mathbf{v}_i) with respect to the basis C, i.e., A = [[T(\mathbf{v}_1)]_C \ [T(\mathbf{v}_2)]_C \ ... \ \ [T(\mathbf{v}_n)]_C]

Eigenvalues and Eigenvectors

Definitions

Eigenvalue	A scalar \lambda is an eigenvalue of a square matrix A if there exists a non-zero vector \mathbf{v} such that A\mathbf{v} = \lambda\mathbf{v}.	To find the eigenvalues of a matrix A, solve the characteristic equation: \det(A - \lambda I) = 0 where I is the identity matrix and \lambda is the	Diagonalizable Matrix	A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that A = PDP^{-1}. The columns of P	
Eigenvector	A non-zero vector \mathbf{v} is an eigenvector of a square matrix A corresponding to the eigenvalue \lambda if A\mathbf{v} = \lambda\mathbf{v}.	eigenvalue. Once the eigenvalues are found, the corresponding eigenvectors can be found by solving the equation: Con	Conditions for	are the eigenvectors of A, and the diagonal entries of D are the corresponding eigenvalues. An n \times n matrix A is	
Eigenspace	The eigenspace of A corresponding to the eigenvalue \lambda is the set of all eigenvectors corresponding to \lambda, together with the zero vector. It is a subspace of \mathbb{R}^n and is denoted by E_\lambda = {\mathbf{v} : A\mathbf{v} = \lambda\mathbf{v}}.	(A - \lambda l)\mathbf{v} = 0 for each eigenvalue \lambda.	Diagonalization	diagonalizable if and only if it has n linearly independent eigenvectors.	
			Procedure	 Find n linearly independent eigenvectors \mathbf{v}_1,, \mathbf{v}_n of A. Form the matrix P whose columns are these 	
				eigenvectors: P = [\mathbf{v}_1 \	

Finding Eigenvalues and Eigenvectors

\mathbf{v}_n].
Form the diagonal matrix

D with the corresponding
eigenvalues on the
diagonal: D = \text{diag}
(\lambda_1, \lambda_2, ...,
\lambda_n).

 $mathbf{v}_2 \ \ldots \$

4. Then $A = PDP^{-1}$.