

Probability Cheatsheet

A quick reference guide to probability concepts, formulas, and distributions, covering basic probability, conditional probability, random variables, and common distributions.

Basic Probability Concepts

Definitions		Basic Probability Formula	Probability Rules		
Probability:	A measure of the likelihood that an event will occur. It is quantified as a number between O and 1, where O indicates impossibility and 1 indicates	The probability of an event <i>E</i> occurring is defined as: P(E) = \text{Number of favorable outcomes}}{Total number of possible outcomes}} = \frac{n(E)}{n(S)} Where: • P(E) is the probability of event <i>E</i> . • n(E) is the number of outcomes in event <i>E</i> . • n(S) is the number of outcomes in the sample space <i>S</i> .	Rule 1: Probability Range	The probability of any event <i>E</i> must be between 0 and 1: 0 \le P(E) \le 1	
	certainty.		Rule 2: Probability of Sample Space	The probability of the entire sample space <i>S</i> is 1:	
Experiment:	A process or action that has observable outcomes.				
Sample Space	The set of all possible outcomes			P(S) = 1	
(5):	or an experiment.		Rule 3: Complement Rule	The probability of an	
Event (E):	A subset of the sample space, representing a specific outcome or set of outcomes.			event <i>E</i> not occurring is:	
Outcome:	come: A possible result of an			P(E') = 1 - P(E)	
experiment.		Rule 4: Addition Rule	For any two events A		
Mutually	Events that cannot occur at the	s that cannot occur at the		and B:	
Exclusive Events:	same time (i.e., they have no outcomes in common).			P(A \cup B) = P(A) + P(B) - P(A \cap B)	
			Rule 5: Addition Rule for Mutually Exclusive Events	If A and B are mutually exclusive:	

Conditional Probability and Independence

Conditional Probability

Independence of Events

Soliditional Probability	independence of Events		bayes medicin	
Conditional probability is the probability of an event A occurring given that another event B has already occurred. It is denoted as $P(A B)$ and calculated as:	Definition	Two events A and B are independent if the occurrence of one does not affect the probability of the other.	Bayes' Theorem describes the probability of an event based on prior knowledge of conditions related to the event. It is given by: P(A B) = \frac{P(B A) \cdot P(A)}{P(B)}	
$P(A B) = \{frac\{P(A \setminus cap B)\}\{P(B)\}, where P(B) > 0$	Independence Condition	Events A and B are independent if and only if: P(A \cap B) = P(A) \cdot	 Where: P(A B) is the posterior probability of A give B. P(B A) is the likelihood of B given A. 	

	P(A \cap B) = P(A) \cdot P(B)	
Conditional Probability and	If A and B are independent, then:	
independence	P(A B) = P(A) and P(B A) = P(B)	1

Bayes' Theorem

vent based on phor knowledge of conditions	
elated to the event. It is given by:	
(A B) = \frac{P(B A) \cdot P(A)}{P(B)}	
/here:	
P(A B) is the posterior probability of A given	

 $P(A \setminus cup B) = P(A) +$

P(B)

А.

- P(A) is the prior probability of A. •
- P(B) is the prior probability of B.

In terms of sample space:

 $P(A|B) = \frac{P(B|A) \det P(A)}{P(B|A) \det P(A)}$ $P(A) + P(B|A') \setminus cdot P(A')$

Random Variables and Distributions

Random Variables		Probability Density Function (PDF)	Expected Value (Mean)	
Definition: Discrete Random Variable: Continuous	 A random variable is a variable whose value is a numerical outcome of a random phenomenon. A variable whose value can only take on a finite number of values or a countably infinite number of values. A variable whose value can take 	For a continuous random variable X, the probability density function (PDF) gives the relative likelihood that X will take on a specific value. The probability that X falls within a certain interval [a, b] is given by the integral of the PDF over that interval: $P(a \leq b) = \\int_{a}^{b} f(x) dx$ Where f(x) is the PDF.	 The expected value (or mean) of a random variable X is the weighted average of its possible values: For discrete random variable: E(X) = \sum x \cdot P(X = x) For continuous random variable: E(X) = \int x \cdot f(x) dx 	
Random Variable:	on any value within a given range.	Cumulative Distribution Function (CDF)	Variance:	The variance measures the spread
Probability Mass Function (PMF) For a discrete random variable X, the probability mass function (PMF) gives the probability that X takes on a specific value x: P(X = x)		The cumulative distribution function (CDF) gives the probability that a random variable X takes on a value less than or equal to x: $F(x) = P(X \mid x)$		of the distribution of a random variable around its mean: Var(X) = E[(X - E(X))^2] Alternative formula: Var(X) = E[X^2] - (E[X])^2
			Standard Deviation:	The standard deviation is the square root of the variance and provides a measure of the typical deviation of values from the mean: SD(X) = \sqrt{Var(X)}

Discrete Distributions

Discrete Distributions	Continuous Distributions
 Bernoulli Distribution Represents the probability of success or failure of a single binary event. PMF: P(X = x) = p^x (1-p)^{(1-x)}, where x \in {0, 1} and p is the 	 Uniform Distribution Represents a constant probability over a given interval. PDF: f(x) = \frac{1}{b-a} for a \le x \le b, where a and b are the interval
 probability of success. E(X) = p Var(X) = p(1-p) 	endpoints. • E(X) = \frac{a+b}{2} • Var(X) = \frac{(b-a)^2}{12}
Binomial Distribution	Exponential Distribution
 Represents the number of successes in a fixed number of independent Bernoulli trials. PMF: P(X = k) = \binom{n}{k} p^k (1-p)^{(n-k)}, where n is the number of trials, k is the number of successes, and p is the probability of success in a single trial. E(X) = np Var(X) = np(1-p) 	 Represents the time until an event occurs in a Poisson process. PDF: f(x) = \lambda e^{-\lambda x} for x \ge 0, where \lambda is the rate parameter. E(X) = \frac{1}{\lambda} Var(X) = \frac{1}{\lambda^2}
 Poisson Distribution Represents the number of events occurring in a fixed interval of time or space. PMF: P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, where \lambda is the average rate of events. E(X) = \lambda Var(X) = \lambda 	 Represents a symmetric, bell-shaped distribution characterized by its mean and standard deviation. PDF: f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, where \mu is the mean and \sigma is the standard deviation. E(X) = \mu Var(X) = \sigma^2