

Number Theory Cheatsheet

A concise reference for key concepts, theorems, and formulas in Number Theory, covering divisibility, congruences, prime numbers, and classical theorems.

Divisibility and Primes

Basic Divisibility

Divisibility Notation	a b) means 'a divides b', i.e., there exists an integer k such that b = ak .
Divisor Properties	If a b and a c , then a (bx + cy) for any integers x, y.
Transitivity of Divisibility	If a b and b c , then a c .
Divisibility by a Product	If $(a \mid c)$, $(b \mid c)$ and $(gcd(a, b) = 1)$, then $(ab \mid c)$.
Euclidean Algorithm	Efficiently computes the greatest common divisor (GCD) of two integers.
GCD Definition	gcd(a, b) is the largest positive integer that divides both a and b.

Prime Numbers

Prime Number Definition	A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
Fundamental Theorem of Arithmetic	Every integer greater than 1 can be uniquely represented as a product of prime numbers, up to the order of the factors.
Prime Factorization	Expressing a number as a product of its prime factors (e.g., $12 = 2^2 \times 3$).
Infinitude of Primes	There are infinitely many prime numbers.
Mersenne Primes	Primes of the form $(2^p - 1)$, where p is also prime.
Twin Primes	Pairs of primes that differ by 2 (e.g., 3 and 5, 5 and 7).

Congruences

Modular Arithmetic

Congruence Notation	$(a \equiv b \pmod{m})$ means 'a is congruent to b modulo m', i.e., $(m \mid (a - b))$.
Properties of Congruences	<pre>If a ≡ b (mod m) and c ≡ d (mod m), then: a + c ≡ b + d (mod m) a - c ≡ b - d (mod m) ac ≡ bd (mod m)</pre>
Cancellation	If $ac \equiv bc \pmod{m}$ and $gcd(c, m) = 1$, then $a \equiv b \pmod{m}$.
Linear Congruences	An equation of the form $(ax = b \pmod{m})$.
Solving Linear Congruences	A solution exists if and only if gcd(a, m) b . If a solution exists, there are gcd(a, m) solutions modulo m.
Modular Inverse	If $ax \equiv 1 \pmod{m}$, then x is the modular inverse of a modulo m. Exists if and only if $gcd(a, m) = 1$.

Important Theorems

Fermat's Little Theorem	If p is prime and $gcd(a, p) = 1$, then $a^{(p-1)} \equiv 1$ $(mod p)$.
Euler's Theorem	If $(gcd(a, m) = 1)$, then $(a \land \phi(m) \equiv 1 \pmod{m})$, where $\phi(m)$ is Euler's totient function.
Euler's Totient Function	$\phi(m)$ counts the number of integers between 1 and m that are relatively prime to m.
Calculating Euler's Totient	If $(m = p1^k1 * p2^k2 * * pn^kn)$, then $(\phi(m) = m)$ * $(1 - 1/p1) * (1 - 1/p2) * * (1 - 1/pn)$.
Chinese Remainder Theorem (CRT)	Given a system of congruences $x \equiv a1 \pmod{m1}$, $x \equiv a2 \pmod{m2}$,, $x \equiv an \pmod{mn}$, where $gcd(mi, mj) = 1$ for all $i \neq j$, there exists a unique solution modulo $M = m1 * m2 * * mn$.
Applying CRT	The CRT provides a method to reconstruct a number from its remainders modulo pairwise coprime moduli.

Diophantine Equations

Linear Diophantine Equations

General Form	(ax + by = c), where a, b, c are integers, and we seek integer solutions for x and y.
Solvability Condition	A solution exists if and only if $gcd(a, b) \mid c$.
Finding Solutions	Use the Extended Euclidean Algorithm to find integers x0, y0 such that $ax\theta + by\theta = gcd(a, b)$. If $gcd(a, b) \mid c$, then $x = x\theta * (c / gcd(a, b))$ and $y = y\theta * (c / gcd(a, b))$ is a particular solution.
General Solution	If $(x0, y0)$ is a particular solution, then the general solution is given by: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Example	Solve $3x + 6y = 9$. Since $gcd(3, 6) = 3$ and $3 \mid 9$, a solution exists. From $3x + 6y = 3*3$, we simplify to $x + 2y = 3$. A particular solution is $x=3$, $y=0$. General solution: $x = 3 + 2t$, $y = -t$.

Pythagorean Triples

Definition	A Pythagorean triple consists of three positive integers a, b, and c, such that $a^2 + b^2 = c^2$.
Primitive Pythagorean Triple	A Pythagorean triple (a, b, c) is primitive if $(gcd(a, b, c) = 1)$.
Generating Pythagorean Triples	If m and n are positive integers with $m > n$, $gcd(m, n) = 1$, and one of m and n is even, then: $a = m^2 - n^2$ $b = 2mn$ $c = m^2 + n^2$ forms a primitive Pythagorean triple.
Example	Let $m = 2$ and $n = 1$. Then: (a = $2^2 - 1^2 = 3$) (b = $2 * 2 * 1 = 4$) (c = $2^2 + 1^2 = 5$) Thus, (3, 4, 5) is a Pythagorean triple.

Page 1 of 2

Arithmetic Functions

Common Arithmetic Functions

Divisor Function $(\sigma(n))$	$\sigma(n)$ is the sum of all positive divisors of n, including 1 and n itself. $\sigma(n) = \sum \{d \mid n\} \ d$
Number of Divisors (τ(n) or d(n))	$\tau(n)$ is the number of positive divisors of n. $\tau(n) = \sum_{n} \{d \mid n\} \ 1$
Euler's Totient Function (φ(n))	$\phi(n)$ is the number of integers between 1 and n that are relatively prime to n. $ \phi(n) = \{k : 1 \le k \le n, \ \gcd(n, \ k) = 1\} $
Möbius Function $(\mu(n))$	 μ(n) is defined as: O if n has one or more repeated prime factors. 1 if n = 1. (-1)^k if n is a product of k distinct primes.
Example: σ(12)	The divisors of 12 are 1, 2, 3, 4, 6, and 12. Thus, $\sigma(12)$ = 1 + 2 + 3 + 4 + 6 + 12 = 28.
Example: τ(12)	The number of divisors of 12 is 6. Thus, $\tau(12) = 6$.

Multiplicativity

Definition	An arithmetic function $f(n)$ is multiplicative if $f(mn) = f(m)f(n)$ whenever $gcd(m, n) = 1$. It is completely multiplicative if this holds for all m and n.
Examples of Multiplicative Functions	Euler's totient function $\phi(n)$, the divisor function $\sigma(n)$, and the number of divisors function $\tau(n)$ are multiplicative.
Möbius function	The Möbius function $\mu(n)$ is also multiplicative.
Implications of Multiplicativity	If $f(n)$ is multiplicative and $(n = p1^k1 * p2^k2 * * pr^kr)$, then $(f(n) = f(p1^k1) * f(p2^k2) * * f(pr^kr)$.

Page 2 of 2 https://cheatsheetshero.com