

Complex Analysis Cheatsheet

A comprehensive cheat sheet covering key concepts, theorems, and formulas in complex analysis, providing a quick reference for students and professionals.

Complex Numbers and Functions

Basic Definitions

Complex Number:	z = x + iy, where x and y are real numbers, and i is the imaginary unit ($i^2 = -1$).		
Real Part:	Re(z) = x		
Imaginary Part:	Im(z) = y		
Complex Conjugate:	\overline{z} = x - iy		
Modulus:	$ z = \sqrt{x^2 + y^2}$		
Argument:	\theta = \arg(z), such that z = z e^{i\theta}		

Complex Functions

$ \begin{aligned} & \text{Representation:} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $	Definition:	A function f: \mathbb{C} \rightarrow \mathbb{C} that maps complex numbers to complex numbers.
every \epsilon > 0, there exists a \delta > 0 such that f(z) - L < \epsilon whenever 0 < z - z_0 < \delta. Continuity: f(z) is continuous at z_0 if	Representation:	and v are real-valued
_	Limit:	every \epsilon > 0, there exists a \delta > 0 such that f(z) - L < \epsilon whenever 0 < z -
	Continuity:	
	Derivative:	

Polar Form

Representation:	$z = r e^{i\theta} = r(\cos \theta)$ + i \sin \theta), where $r = z $ and \theta = \arg(z)
Multiplication:	$z_1z_2 = r_1r_2 e^{i(\theta_1 + \theta_2)}$
Division:	$\begin{aligned} & \frac{z_1}{z_2} = \frac{r_1}{r_2} \\ & e^{i(\theta_1 - \theta_2)} \end{aligned}$
Power:	$z^n = r^n e^{in \theta}$
Roots:	$z^{1/n} = r^{1/n} e^{i(\theta + 2\pi)},$ for k = 0, 1,, n-1

Analytic Functions

Cauchy-Riemann Equations

Equations:	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
Analyticity:	If $f(z) = u(x, y) + iv(x, y)$ is analytic in a domain D, then the Cauchy-Riemann equations hold in D.
Sufficient Condition:	If the partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations in a domain D , then $f(z)$ is analytic in D .
Complex Derivative:	$f'(z) = \frac{\left\{ \left(x + i \right) + i \right\}}{\left(x \right) } = \frac{\left(x \right) }{\left(x \right) } - i \left(x \right) } - i \left(x \right) }$
Harmonic Functions:	If f(z) is analytic, then u and v are harmonic functions, i.e.,

Elementary Functions

Exponential Function:	$e^z = e^{x + iy} = e^x(\cos y + i \sin y)$	
Trigonometric Functions:	$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \cos z = \frac{e^{iz} + e^{-iz}}{2}$	
Hyperbolic Functions:	$\sinh z = \frac{e^z - e^{-z}}{2}, \cosh z = \frac{e^z + e^{-z}}{2}$	
Logarithmic Function:	$\log z = \ln z + i \arg z$	
Principal Value of Logarithm:	$\label{log} $$ z = \ln z + i \text{Arg } z, where -\pi < \text{Arg } z \leq \pi $	
Complex Power:	$z^c = e^{c \log z}$, where c is a complex constant.	

Complex Integration

Contour Integrals

Definition:	$\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt$, where C is a smooth curve parameterized by $z(t)$, a $\int_C f(z) dt$.
Properties:	$\label{eq:continuous} $$ \int_C [\alpha] dz = \alpha \int_C f(z) dz + \beta \int_C f(z) dz + \int_C f(z) dz = -\int_C f(z) dz $
ML Estimate:	$\int \int C f(z) dz \leq ML$, where M is an upper bound for $ f(z) $ on C, and L is the length of C.

Cauchy's Theorem and Integral Formula

Cauchy's Theorem:	If $f(z)$ is analytic in a simply connected domain D, then for any closed contour C in D, $\int f(z) dz = 0$.
Cauchy's Integral Formula:	If $f(z)$ is analytic in a simply connected domain D, and z_0 is any point in D inside a closed contour C, then $f(z_0) = \frac{1}{2\pi} \frac{1}{2\pi} \cdot \frac{1}{2\pi}$
Generalized Integral Formula:	$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz$

Series and Residues

Taylor and Laurent Series

Taylor Series:	If f(z) is analytic in a disk z - z_0 < R, then f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.
Laurent Series:	If $f(z)$ is analytic in an annulus $r < z - z_0 < R$, then $f(z) = \sum_{n=-\infty} \{n - z_0\}^n$, where $a_n = \frac{1}{2\pi} \{ \sum_{n=-\infty} \{n - z_0\}^n \} $ dz.

Page 1 of 2 https://cheatsheetshero.com

Residue Theorem

Applications of Residue Theorem

Residue:	The residue of f(z) at an isolated singularity z_0 is the coefficient a_{-1} in the Laurent series expansion of f(z) about z_0.	Improper Integrals:	The Residue Theorem can be used to evaluate improper integrals of the form \int_{-\infty}^{\infty} f(x) dx.
Residue Theorem:	If f(z) is analytic inside and on a closed contour C, except for a finite number of isolated singularities z_k inside C, then \oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f, z_k).	Trigonometric Integrals:	The Residue Theorem can be used to evaluate integrals of the form \int_0^{2\pi} F(\cos \theta, \sin \theta) d\theta.
Residue Calculation (Simple Pole):	If $f(z)$ has a simple pole at z_0 , then $\text{text}\{\text{Res}\}(f, z_0) = \lim_{z \to 0} (z - z_0) f(z)$.		
Residue Calculation (Pole of Order n):	If f(z) has a pole of order n at z_0, then \text{Res}(f, z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [(z - z_0)^n f(z)].		

Page 2 of 2 https://cheatsheetshero.com