

Biochemistry Essentials Cheatsheet

A concise reference for key biochemical concepts, pathways, and reactions. This cheat sheet covers essential topics for students and professionals in biochemistry and related fields, providing a quick guide to metabolic processes, enzyme kinetics, and biomolecule structures.

Macromolecule Building Blocks

Amino Acids		Nucleotides		Carbohydrates	
General Structure:	Amino acids consist of a central carbon atom bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (-H), and a unique side	Structure:	Composed of a nitrogenous base (adenine, guanine, cytosine, thymine, or uracil), a pentose sugar (ribose or deoxyribose), and one or more	Monosaccharides:	Simple sugars such as glucose, fructose, and galactose. They are the building blocks of complex carbohydrates.
Classification:	chain (R). Amino acids are classified based on their R-group properties: nonpolar, polar uncharged, positively charged (basic), and negatively charged (acidic).	Nitrogenous Bases:	phosphate groups. Purines (adenine and guanine) have a double-ring structure, while pyrimidines (cytosine, thymine, and uracil) have a single-ring structure.	Disaccharides:	Composed of two monosaccharides linked by a glycosidic bond. Examples include sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
Peptide Bond: /	Amino acids are linked by peptide bonds, formed through dehydration synthesis between the carboxyl group of one amino acid and the amino	DNA vs. RNA:	DNA contains deoxyribose and thymine, while RNA contains ribose and uracil.	Polysaccharides:	Complex carbohydrates made up of many
		Phosphodiester Bond:	Nucleotides are linked by phosphodiester bonds between the 3'-hydroxyl		monosaccharides. Examples include starch, glycogen, and cellulose.
Essential Amino Acids:	Acids: by the body and must be		group of one nucleotide and the 5'-phosphate group of another.	Glycosidic Bond:	The covalent bond that joins two monosaccharides. It is formed through dehydration
obtained from the diet. Examples include leucine, isoleucine, valine, lysine, threonine, tryptophan, phenylalanine, and methionin	Examples include leucine, isoleucine, valine, lysine,	Base Pairing:	Adenine pairs with thymine (or uracil) via two hydrogen bonds, while guanine pairs with cytosine via three hydrogen bonds.	Isomers:	synthesis. Carbohydrates can exist as different isomers, such as D- glucose and L-glucose, which are mirror images of
Chirality:	All amino acids, except glycine, are chiral. Only L-amino acids are found in proteins.	Nucleosides:	A nucleoside consists of a nitrogenous base and a pentose sugar, but without	Functions:	each other. Carbohydrates serve as energy sources, structural
tv tr a S	Each amino acid has at least two pKa values, corresponding to the protonation states of the amino and carboxyl groups. Some also have a pKa for their side chain.		any phosphate groups.		components (e.g., cellulose in plants), and signaling molecules.

Enzyme Kinetics and Mechanisms

Michaelis-Menten Kinetics

Enzyme Inhibition

Enzyme Mechanisms

-	 v = \frac{V_{max}[S]}{K_M + [S]} where: v = reaction rate V_{max} = maximum reaction rate [S] = substrate concentration K_M = Michaelis constant 	Competitive Inhibition:	Inhibitor binds to the active site, preventing substrate binding. K_M increases, V_{max} remains unchanged.	Acid-Base Catalysis:	Enzyme uses acidic or basic amino acid side chains to transfer protons, stabilizing transition states.
			Can be overcome by increasing substrate concentration.	Covalent Catalysis:	Enzyme forms a transient covalent bond with the substrate, creating a reactive intermediate.
K_M:	The substrate concentration at which the reaction rate is half of V_{max}. It is a measure of the affinity of the enzyme for its	Uncompetitive Inhibition:	Inhibitor binds only to the enzyme-substrate complex. Both K_M and V_{max} decrease. Cannot be overcome by	Metal Ion Catalysis:	Metal ions participate in catalysis by stabilizing charged intermediates, mediating redox reactions, or acting as Lewis acids.
	substrate. A lower K_M indicates higher affinity.		increasing substrate concentration.	Proximity and Orientation	Enzymes bring substrates together in the correct
V_{max}:	The maximum rate of reaction when the enzyme is saturated with substrate. It is directly	Noncompetitive Inhibition:	Inhibitor binds to a site distinct from the active site, affecting enzyme conformation. V_{max} decreases, K_M remains unchanged. Cannot be overcome by	Effects:	orientation, increasing the frequency of collisions and facilitating the reaction.
	proportional to the enzyme concentration.			Transition State Stabilization:	Enzymes bind and stabilize the transition state of the reaction,
Lineweaver- Burk Plot:	A double reciprocal plot of the Michaelis-Menten equation: \frac{1}{v} = \frac{K_M} {V_{max}} \frac{1}{[S]} + \frac{1} {V_{max}}			lo	lowering the activation energy and accelerating the reaction.
			increasing substrate concentration.	Serine Proteases:	A family of enzymes that use a serine residue in their active site to cleave peptide bonds. Examples include chymotrypsin, trypsin, and elastase.
	 x-intercept = -\frac{1}{K_M} y-intercept = \frac{1} {V_{max}} 	Mixed Inhibition:	Inhibitor can bind to either the enzyme or the enzyme- substrate complex. V_{max} decreases, and K_M may		
Catalytic Efficiency:	A measure of how efficiently an enzyme converts substrate to product. Given by k_{cat}/K_M, where k_{cat} is the turnover number.		increase or decrease. Cannot be overcome by increasing substrate concentration.		
Turnover Number (k_{cat}):	The number of substrate molecules converted to product per enzyme molecule per unit of time when the enzyme is saturated with substrate. k_{cat} = V_{max}/[E]_T, where [E]_T is the total enzyme concentration.	Irreversible Inhibition:	Inhibitor binds covalently to the enzyme, permanently inactivating it. Examples include nerve gases and some drugs.		
		Allosteric Regulation:	Regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site. Can be activating or inhibitory.		

Metabolic Pathways

Glycolysis

Citric Acid Cycle (Krebs Cycle)

Oxidative Phosphorylation

Overview: Key Enzymes:	The breakdown of glucose into pyruvate, producing ATP and NADH. Occurs in the cytoplasm. Hexokinase/Glucokinase, Phosphofructokinase-1 (PFK-1),	Overview:	A series of reactions that oxidize acetyl-CoA to carbon dioxide, producing ATP, NADH, and FADH2. Occurs in the mitochondrial matrix.	Overview:	The process by which ATP is synthesized using the energy released from the electron transport chain. Occurs in the inner mitochondrial membrane.
Enzymes.	Pyruvate Kinase.	Key Enzymes:	Citrate Synthase, Isocitrate	Electron Transport Chain (ETC):	A series of protein complexes (Complex I-IV) that transfer electrons from NADH and FADH2 to oxygen, creating a
Regulation:	PFK-1 is the major regulatory point. Activated by AMP and fructose-2,6-bisphosphate;		Dehydrogenase, \alpha- Ketoglutarate Dehydrogenase Complex.		
	inhibited by ATP and citrate.	Regulation:	Isocitrate Dehydrogenase is		proton gradient.
Net Products:	2 ATP, 2 NADH, 2 Pyruvate per glucose molecule.		activated by ADP and inhibited by ATP and NADH. \alpha-Ketoglutarate	ATP Synthase: Uncouplers:	An enzyme that uses the proton gradient to drive the synthesis of ATP from ADP and inorganic phosphate.
Anaerobic	In the absence of oxygen,		Dehydrogenase is inhibited by		
Fate of	pyruvate is converted to lactate		ATP, NADH, and succinyl-CoA.		Molecules that disrupt the proton gradient, uncoupling electron transport from ATP synthesis. Examples include DNP.
Pyruvate:	by lactate denydrogenase, regenerating NAD+.	lactate dehydrogenase, generating NAD+. Net Products:	1 ATP, 3 NADH, 1 FADH2, 2 CO2 per acetyl-CoA molecule.		
Aerobic Fate of Pyruvate:	pyruvate is converted to acetyi- CoA, which enters the citric acid cycle.	Entry Point:	Acetyl-CoA, derived from pyruvate, fatty acids, and amino acids.		
				Inhibitors:	Substances that block the electron transport chain at various points. Examples include cyanide (Complex IV) and rotenone (Complex I).
		Intermediates:	Citrate, Isocitrate, \alpha- Ketoglutarate, Succinyl-CoA, Succinate, Fumarate, Malate, Oxaloacetate.		
				Net ATP Yield:	Approximately 32 ATP per glucose molecule, depending on the officiency of the proton

Lipid Metabolism

Fatty Acid Synthesis

Fatty Acid Oxidation (Beta-Oxidation)

Ketone Body Metabolism

Location:	Cytosol	Location:	Mitochondrial matrix	
Precursor:	Acetyl-CoA (transported from mitochondria via citrate shuttle)	Process:	Sequential removal of two-carbon units (acetyl-CoA) from the fatty	
Кеу	Acetyl-CoA Carboxylase (ACC)		acid chain	
Enzyme:		Activation:	Fatty acids are activated by	
Regulation:	ACC is activated by citrate and insulin, inhibited by palmitoyl-CoA		attachment to CoA, forming fatty acyl-CoA	
	and glucagon/epinephrine	Carnitine Shuttle:	Transports fatty acyl-CoA from the cytosol into the mitochondrial matrix	
Process:	Repeated addition of two-carbon units from malonyl-CoA to a			
	growing fatty acid chain	Products:	Acetyl-CoA, FADH2, NADH	
Product:	Palmitate (C16:0), which can be further elongated and desaturated	Regulation:	Inhibited by malonyl-CoA (ensures that fatty acid synthesis	
			and oxidation do not occur simultaneously)	

Ketone Bodies:	Acetoacetate, 3- hydroxybutyrate, and acetone
Synthesis:	Occurs in the liver mitochondria during prolonged fasting or starvation
Precursor:	Acetyl-CoA (derived from fatty acid oxidation)
Utilization:	Used as an alternative fuel source by the brain, heart, and muscle during glucose deprivation
Ketogenesis:	The process of ketone body synthesis
Ketoacidosis:	Excessive production of ketone bodies, leading to a decrease in blood pH (occurs in uncontrolled diabetes)

the efficiency of the proton gradient and ATP synthase.