
Programming Concepts Cheatsheet
A quick reference guide to fundamental programming concepts, covering data structures, algorithms, paradigms, and more. Useful for students and

experienced developers alike.

Core Concepts

Programming Paradigms

Data Structures

Array A collection of elements, each identified by an index or a key.

Allows efficient access to elements by index but can be

inefficient for insertions and deletions in the middle.

Linked List A sequence of nodes, each containing data and a link to the

next node. Efficient for insertions and deletions but

inefficient for random access.

Stack A LIFO (Last-In, First-Out) data structure. Common

operations: push (add to the top), pop (remove from the top),

peek (view the top element).

Queue A FIFO (First-In, First-Out) data structure. Common

operations: enqueue (add to the rear), dequeue (remove from

the front).

Hash

Table/Map

A data structure that uses a hash function to map keys to

values, providing efficient key-based lookup. Can suffer from

collisions.

Tree A hierarchical data structure composed of nodes, where each

node has a value and links to child nodes. Examples include

binary trees, AVL trees, red-black trees.

Graph A collection of nodes (vertices) and edges, representing

relationships between nodes. Used to model networks,

relationships, and connections.

Algorithms

Sorting

Algorithms

Algorithms that arrange elements in a specific order (e.g.,

ascending or descending). Examples: Bubble Sort, Merge

Sort, Quick Sort.

Searching

Algorithms

Algorithms that find a specific element in a data structure.

Examples: Linear Search, Binary Search.

Dynamic

Programming

An optimization technique that breaks down a problem

into smaller subproblems, solves them, and stores the

solutions to avoid redundant computations.

Greedy

Algorithms

An approach that makes locally optimal choices at each

step, hoping to find a global optimum. May not always

yield the best solution.

Graph

Algorithms

Algorithms for traversing and analyzing graphs. Examples:

Depth-First Search (DFS), Breadth-First Search (BFS),

Dijkstra’s Algorithm.

Divide and

Conquer

An algorithmic paradigm that recursively breaks down a

problem into smaller subproblems until they become

simple enough to be solved directly. The solutions to the

subproblems are then combined to solve the original

problem.

Paradigms Overview

Programming paradigms are styles or ‘ways’ of

programming. They are not specific languages or

tools, but influence the structure and approach to

solving problems with code.

Imperative Programming

Description Focuses on how to achieve a

result. Uses statements that

change a program’s state.

Relies on sequential execution

of commands.

Characteristics Uses variables, assignment

statements, and control flow

(loops, conditionals) to modify

the program’s state.

Examples C, Pascal, Fortran

Declarative Programming

Description Focuses on what result is

desired, rather than how to

achieve it. Expresses the logic

of a computation without

explicitly describing the control

flow.

Characteristics Avoids mutable state and side

effects. Relies on expressions

and functions rather than

statements.

Examples SQL, Prolog, Haskell

Object-Oriented Programming (OOP)

Description Organizes programs around

‘objects’, which encapsulate data

(attributes) and code (methods)

that operate on that data.

Key

Concepts

Encapsulation, Inheritance,

Polymorphism, Abstraction

Examples Java, C++, Python, C#

Functional Programming

Description Treats computation as the

evaluation of mathematical

functions and avoids changing

state and mutable data.

Characteristics Uses pure functions (no side

effects), immutability,

recursion, and higher-order

functions.

Examples Haskell, Lisp, Clojure, Scala

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/153-programming-concepts-cheatsheet
http://cheatsheetshero.com/user/all/153-programming-concepts-cheatsheet
http://cheatsheetshero.com/user/all/153-programming-concepts-cheatsheet
https://cheatsheetshero.com/


Design Patterns

Creational Patterns

Singleton Ensures that a class has only one

instance and provides a global point

of access to it.

Factory

Method

Defines an interface for creating an

object, but lets subclasses decide

which class to instantiate.

Abstract

Factory

Provides an interface for creating

families of related or dependent

objects without specifying their

concrete classes.

Builder Separates the construction of a

complex object from its

representation, allowing the same

construction process to create

different representations.

Prototype Specifies the kind of objects to

create using a prototypical

instance, and create new objects

by copying this prototype.

Structural Patterns

Adapter Allows interfaces of incompatible

classes to work together. Converts

the interface of a class into another

interface clients expect.

Bridge Decouples an abstraction from its

implementation, so that the two

can vary independently.

Composite Composes objects into tree

structures to represent part-whole

hierarchies. Lets clients treat

individual objects and compositions

uniformly.

Decorator Dynamically adds responsibilities to

an object. Provides a flexible

alternative to subclassing for

extending functionality.

Facade Provides a unified interface to a set

of interfaces in a subsystem.

Defines a higher-level interface that

makes the subsystem easier to use.

Flyweight Uses sharing to support large

numbers of fine-grained objects

efficiently.

Proxy Provides a surrogate or placeholder

for another object to control access

to it.

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Behavioral Patterns

Chain of

Responsibility

Avoids coupling the sender of a

request to its receiver by giving

multiple objects a chance to

handle the request. Chains the

receiving objects and passes

the request along the chain until

an object handles it.

Command Encapsulates a request as an

object, thereby letting you

parameterize clients with

different requests, queue or log

requests, and support undoable

operations.

Interpreter Given a language, define a

representation for its grammar

along with an interpreter that

uses the representation to

interpret sentences in the

language.

Iterator Provides a way to access the

elements of an aggregate

object sequentially without

exposing its underlying

representation.

Mediator Defines an object that

encapsulates how a set of

objects interact. Mediator

promotes loose coupling by

keeping objects from referring

to each other explicitly, and lets

you vary their interaction

independently.

Memento Without violating

encapsulation, capture and

externalize an object’s internal

state so that the object can be

restored to this state later.

Observer Defines a one-to-many

dependency between objects

so that when one object

changes state, all its

dependents are notified and

updated automatically.

State Allows an object to alter its

behavior when its internal state

changes. The object will appear

to change its class.

Strategy Defines a family of algorithms,

encapsulates each one, and

makes them interchangeable.

Strategy lets the algorithm vary

independently from clients that

use it.

Template

Method

Defines the skeleton of an

algorithm in an operation,

deferring some steps to

subclasses. Template Method

lets subclasses redefine certain

steps of an algorithm without

changing the algorithm’s

structure.

Visitor Represents an operation to be

performed on the elements of

an object structure. Visitor lets

you define a new operation

without changing the classes of

the elements on which it

operates.

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Common Algorithms

Searching Algorithms

Linear Search Simplest search algorithm. It

sequentially checks each

element of the list until a match

is found or the entire list has

been searched.

Time Complexity: O(n)

Binary

Search

Efficient algorithm for finding an

item from a sorted list. It

repeatedly divides the search

interval in half.

Time Complexity: O(log n)

Jump Search Like binary search, but jumps

ahead by a fixed number of steps

(the ‘jump’) and then performs a

linear search within that block.

Useful for large, sorted arrays.

Time Complexity: O(√n)

Interpolation

Search

An improvement over binary

search for uniformly distributed

data. Instead of dividing the

search space in half, it estimates

the position of the target value

based on its value relative to the

values in the search space.

Time Complexity: O(log log n)

on average for uniformly

distributed data, O(n) in worst

case.

Sorting Algorithms

Bubble

Sort

Repeatedly steps through the list,

compares adjacent elements and

swaps them if they are in the wrong

order. Easy to implement but

inefficient for large lists.

Time Complexity: O(n^2)

Insertion

Sort

Builds the final sorted array (or list)

one item at a time. It is much less

efficient on large lists than more

advanced algorithms such as

quicksort, heapsort, or merge sort.

Time Complexity: O(n^2)

Selection

Sort

Divides the input list into two parts:

the sorted sublist of items which is

built up from left to right at the front

(left) of the list and the sublist of the

remaining unsorted items that

occupy the rest of the list. It

repeatedly finds the minimum

element from the unsorted part and

puts it at the end of the sorted part.

Time Complexity: O(n^2)

Merge

Sort

A divide and conquer algorithm that

divides the input array into two

halves, recursively sorts each half,

and then merges the sorted halves.

Time Complexity: O(n log n)

Quick

Sort

A divide and conquer algorithm that

picks an element as pivot and

partitions the given array around the

picked pivot. Although its worst-case

time complexity is O(n^2), its

average performance is excellent in

practice.

Time Complexity: Average: O(n log

n), Worst: O(n^2)

Heap

Sort

Based on the heap data structure. It

first builds a max-heap from the

data, and then repeatedly extracts

the maximum element and places it

at the end of the sorted portion of

the array.

Time Complexity: O(n log n)

Graph Algorithms

Depth-First

Search (DFS)

Traverses a graph by exploring as

far as possible along each branch

before backtracking.

Common Uses: Path finding,

topological sorting, cycle

detection.

Breadth-First

Search (BFS)

Traverses a graph level by level,

exploring all neighbors of the

current node before moving on

to the next level.

Common Uses: Shortest path

finding in unweighted graphs.

Dijkstra’s

Algorithm

An algorithm for finding the

shortest paths between nodes in

a weighted graph (with non-

negative edge weights).

Common Uses: Navigation,

network routing.

A Search

Algorithm*

An informed search algorithm

that uses heuristics to guide its

search, making it more efficient

than Dijkstra’s algorithm in many

cases.

Common Uses: Pathfinding,

game AI.

Minimum

Spanning

Tree (MST)

Finds a subset of the edges that

connects all the vertices

together, without any cycles and

with the minimum possible total

edge weight. Algorithms include

Kruskal’s and Prim’s.

Common Uses: Network design,

clustering.

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

