
Database Systems Cheatsheet
A comprehensive cheat sheet covering essential concepts in database systems, including data modeling, SQL, normalization, transactions, and

indexing.

Data Modeling

SQL Fundamentals

Entity-Relationship (ER) Model

Entity: A real-world object distinguishable from

other objects.

Example: Customer, Product, Order

Attribute: A property describing an entity.

Example: Customer ID, Product Name, Order

Date

Relationship: An association among entities.

Example: Customer places Order, Product is part

of Order

Cardinality: Specifies the number of instances of

one entity that can be related to another entity.

Types: One-to-one (1:1), One-to-many (1:N),

Many-to-one (N:1), Many-to-many (N:M)

Primary Key: A unique identifier for an entity.

Example: Customer ID in Customer entity

Foreign Key: An attribute in one entity that refers

to the primary key of another entity, establishing

a link between them.

Example: Customer ID in Order entity referencing

Customer entity

Enhanced Entity-Relationship (EER) Model

Specialization: Creating subtypes (child

entities) from a supertype

(parent entity).

Example: Employee

(supertype) can be specialized

into Salaried_Employee and

Hourly_Employee (subtypes).

Generalization: Creating a supertype from

subtypes.

Example: Combining Car and

Truck into Vehicle (supertype).

Aggregation: Treating a relationship as an

entity.

Example: Project entity

consisting of Worker entity and

Task entity.

Inheritance: Subtypes inherit attributes and

relationships from their

supertype.

Example: Salaried_Employee

inherits attributes like

Employee ID and Name from

Employee.

UML Class Diagrams

Class: Represents a set of objects with common

attributes and behavior.

Example: Customer  class with attributes

CustomerID , Name , Address .

Association: Represents a relationship between

classes.

Example: Customer  places Order .

Multiplicity: Specifies the cardinality of the

association.

Example: One Customer  can place many

Order s (1..*).

Aggregation/Composition: Represents a part-

whole relationship.

Example: Order  consists of OrderItem s

(composition if OrderItem  cannot exist without

Order ).

Basic Queries

SELECT

statement:

Retrieves data from a database.

Example:

SELECT column1, column2 

FROM table_name;

WHERE  clause: Filters the results based on a

condition.

Example:

SELECT * FROM Customers 

WHERE Country = 'USA';

ORDER BY

clause:

Sorts the results.

Example:

SELECT * FROM Products 

ORDER BY Price DESC;

LIMIT  clause: Limits the number of rows

returned.

Example:

SELECT * FROM Employees 

LIMIT 10;

DISTINCT

keyword:

Retrieves unique values.

Example:

SELECT DISTINCT Country 

FROM Customers;

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
https://cheatsheetshero.com/


Joins

INNER 

JOIN :

Returns rows when there is a match

in both tables.

Example:

SELECT Orders.OrderID, 

Customers.CustomerName

FROM Orders

INNER JOIN Customers ON 

Orders.CustomerID = 

Customers.CustomerID;

LEFT 

JOIN  (or

LEFT 

OUTER 

JOIN ):

Returns all rows from the left table,

and the matched rows from the

right table. If there is no match, the

result is NULL on the right side.

Example:

SELECT 

Customers.CustomerName, 

Orders.OrderID

FROM Customers

LEFT JOIN Orders ON 

Customers.CustomerID = 

Orders.CustomerID;

RIGHT 

JOIN  (or

RIGHT 

OUTER 

JOIN ):

Returns all rows from the right table,

and the matched rows from the left

table. If there is no match, the result

is NULL on the left side.

Example:

SELECT 

Customers.CustomerName, 

Orders.OrderID

FROM Customers

RIGHT JOIN Orders ON 

Customers.CustomerID = 

Orders.CustomerID;

FULL 

OUTER 

JOIN :

Returns all rows when there is a

match in one of the tables.

Example:

SELECT 

Customers.CustomerName, 

Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON 

Customers.CustomerID = 

Orders.CustomerID;

Aggregate Functions

COUNT()  - Returns the number of rows.

Example:

SELECT COUNT(*) FROM Orders;

SUM()  - Returns the sum of values.

Example:

SELECT SUM(Price) FROM Products;

AVG()  - Returns the average value.

Example:

SELECT AVG(Price) FROM Products;

MIN()  - Returns the minimum value.

Example:

SELECT MIN(Price) FROM Products;

MAX()  - Returns the maximum value.

Example:

SELECT MAX(Price) FROM Products;

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Normalization

Normal Forms

1NF (First Normal Form):

Eliminate repeating groups of data.

Each column should contain only atomic values.

2NF (Second Normal Form):

Must be in 1NF and eliminate redundant data.

No non-key attribute should be dependent on a proper subset of any

candidate key.

3NF (Third Normal Form):

Must be in 2NF and eliminate transitive dependencies.

No non-key attribute should be transitively dependent on the primary key.

BCNF (Boyce-Codd Normal Form):

A stronger version of 3NF.

Every determinant must be a candidate key.

4NF (Fourth Normal Form):

Must be in BCNF and eliminate multi-valued dependencies.

5NF (Fifth Normal Form):

Must be in 4NF and eliminate join dependencies.

Example of Normalization

Consider a table Orders  with columns: OrderID , CustomerID ,

CustomerName , CustomerAddress , ProductID , ProductName ,

ProductPrice .

Unnormalized:

OrderID | CustomerID | CustomerName | CustomerAddress | 

ProductID | ProductName | ProductPrice

--------|------------|--------------|-----------------|---------

--|-------------|------------

1       | 101        | John Doe     | 123 Main St     | 1         

| Laptop      | 1200

1       | 101        | John Doe     | 123 Main St     | 2         

| Mouse       | 25

1NF:

Remove repeating groups by creating separate rows for each product.

OrderID | CustomerID | CustomerName | CustomerAddress | 

ProductID | ProductName | ProductPrice

--------|------------|--------------|-----------------|---------

--|-------------|------------

1       | 101        | John Doe     | 123 Main St     | 1         

| Laptop      | 1200

1       | 101        | John Doe     | 123 Main St     | 2         

| Mouse       | 25

2NF:

Create separate tables for Customers , Products , and Orders  to

eliminate redundant data.

Tables:

Customers : CustomerID , CustomerName , CustomerAddress

Products : ProductID , ProductName , ProductPrice

Orders : OrderID , CustomerID , ProductID

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Transactions and Indexing

Transaction Properties (ACID)

Atomicity: All operations in a transaction must be

treated as a single “unit”. Either all operations

succeed, or none do.

Example: Transferring money from one account

to another involves debiting one account and

crediting another. Both must succeed or fail

together.

Consistency: A transaction must maintain the

integrity of the database. Moving from one valid

state to another.

Example: A transaction should not violate any

defined constraints (e.g., primary key, foreign

key).

Isolation: Transactions should be isolated from

each other. Concurrent execution should have

the same result as if transactions were executed

serially.

Example: Two transactions updating the same

data should not interfere with each other.

Durability: Once a transaction is committed, the

changes are permanent and will survive system

failures.

Example: After a successful money transfer, the

changes should not be lost even if the system

crashes immediately afterward.

Transaction Management

START 

TRANSACTIO

N :

Begins a new transaction.

Example:

START TRANSACTION;

COMMIT : Saves the changes made during

the transaction.

Example:

COMMIT;

ROLLBACK

:

Undoes the changes made during

the transaction.

Example:

ROLLBACK;

SAVEPOIN

T :

Creates a point within a

transaction to which you can

rollback.

Example:

SAVEPOINT my_savepoint;

RELEASE 

SAVEPOINT

:

Removes a previously defined

savepoint.

Example:

RELEASE SAVEPOINT 

my_savepoint;

Indexing

Purpose:

Indexes improve the speed of data retrieval

operations on a database table.

Types:

B-tree index: Most common type, efficient

for range queries and equality lookups.

Hash index: Fast for equality lookups but not

suitable for range queries.

Full-text index: Used for searching text data.

Creating an Index:

CREATE INDEX index_name ON table_name 

(column1, column2, ...);

Example:

CREATE INDEX idx_customer_name ON 

Customers (CustomerName);

Considerations:

Indexes can slow down write operations (INSERT,

UPDATE, DELETE) because the index also needs

to be updated. Choose indexes wisely based on

the most frequent queries.

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

