

Environmental Engineering Cheatsheet

A comprehensive cheat sheet covering essential concepts and formulas in environmental engineering. This guide provides a quick reference for professionals and students dealing with water quality, air pollution, waste management, and environmental regulations.

remove dissolved gases and oxidize certain pollutants.

Water Quality Engineering

Water Quality Parameters

Water Treatment Processes

Parameter	Description and Significance	Process	Descrip
Η	Measure of acidity or alkalinity; affects aquatic life and chemical reactions.	Coagulation/Flocculation	Adding clump s togethe
Dissolved Oxygen (DO)	Amount of oxygen dissolved in water; essential for aquatic organisms.	Sedimentation	Allowin flocs to
Biochemical Oxygen Demand (BOD)	Amount of oxygen consumed by microorganisms in decomposing organic matter.	Filtration	the wat Removi particle water th medium gravel).
Chemical Oxygen Demand (COD)	Measure of the oxygen equivalent of all organic matter in a water sample that is		
	susceptible to oxidation.	Disinfection	Killing c pathog microor chlorina radiatio
Total Suspended Solids (TSS)	Total amount of solid material suspended in water.		
Turbidity	Measure of water clarity; affected by suspended solids and dissolved materials.	Aeration	Increas content remove

Key Formulas

Description Adding chemicals to clump small particles	Hardy-Cross Method (Pipe Network Analysis): Iterative method to determine flow distribution in a pipe network based on head loss equations.
together into larger, settleable flocs.	Manning's Equation (Open Channel Flow): $V = (k/n) * R^{2/3} * S^{1/2}$
Allowing the heavier flocs to settle out of the water.	 where: V = velocity (m/s or ft/s) k = conversion factor (1 for metric, 1.49 for
Removing suspended particles by passing water through a filter medium (e.g., sand, gravel).	 n = Manning's roughness coefficient R = hydraulic radius (m or ft) S = channel slope (m/m or ft/ft)
Killing or inactivating pathogenic microorganisms (e.g., chlorination, UV radiation).	Darcy's Law (Groundwater Flow): Q = -KA (dh/dl) where: • Q = volumetric flow rate • K = hydraulic conductivity
Increasing the oxygen content of water to	A = cross-sectional areadh/dl = hydraulic gradient

Air Quality Engineering

Air Pollutants

Air Pollution Control Technologies

Key Formulas

Pollutant	Source and Effects	Technology	Description	Gaussian Plume Model:
Particulate Matter (PM2.5, PM10)	Combustion processes, industrial activities; respiratory issues, reduced visibility.	Scrubbers	Use liquid to remove particulate matter or gases from industrial exhaust	$C(x, y, z) = (Q / (2 * \pi * u * \sigma_y * \sigma_z)) * exp(-y^{+}) / (2 * \sigma_y^{+})) * [exp(-(z-H)^2 / (2 * \sigma_z^{+})) + exp(-(z+H)^2 / (2 * \sigma_z^{+}))] + exp(-(z+H)^2 / (2 * \sigma_z^{+}))]$ where:
Ozone (O3)	Ozone (O3) Secondary pollutant formed by		streams.	• C = concentration at point (x, y, z)
	photochemical reactions; respiratory irritant, damages vegetation.	Electrostatic Precipitators (ESPs)	Use an electric field to remove particulate matter from exhaust streams.	 Q = emission rate u = wind speed g x g z = borizontal and vertical dispersion
Nitrogen Oxides (NOx)	Combustion processes; contributes to smog and acid rain.	Baghouses	Use fabric filters to remove particulate matter from exhaust streams.	 O_y, O_z = horizontal and vertical dispersion coefficients H = effective stack height
Sulfur Dioxide (SO2)	Combustion of sulfur- containing fuels; respiratory irritant, contributes to acid rain.	Catalytic Converters	Convert harmful pollutants (e.g., CO, NOx) into less harmful substances (e.g.,	Stack Height Calculation: Based on regulatory requirements to ensure adequate dispersion of pollutants.
Carbon	Incomplete combustion of		CO2, N2).	
Monoxide (CO)	fuels; reduces oxygen delivery in the bloodstream.	Adsorption I	Using materials like activated carbon to trap pollutants on	
Lead (Pb)	Industrial processes, historical use in gasoline; neurological effects.		their surface.	

Solid Waste Management

Waste Generation and Composition

Category	Description and Examples
Municipal Solid Waste (MSW)	Waste from households, commercial establishments, and institutions (e.g., paper, plastics, food waste).
Industrial Waste	Waste from manufacturing and industrial processes (e.g., chemicals, metals).
Hazardous Waste	Waste that poses a substantial threat to human health or the environment (e.g., toxic chemicals, radioactive materials).
Construction and Demolition (C&D) Waste	Waste from construction, renovation, and demolition of buildings and structures (e.g., concrete, wood).
Electronic Waste (E-waste)	Discarded electronic devices (e.g., computers, phones, televisions).

Waste Treatment and Disposal Methods

Method	Description
Landfilling	Disposing of waste in engineered landfills with liners and leachate collection systems.
Incineration	Burning waste at high temperatures to reduce volume and generate energy.
Composting	Decomposing organic waste aerobically to produce compost, a soil amendment.
Recycling	Processing waste materials into new products to reduce resource consumption.
Anaerobic Digestion	Decomposing organic waste in the absence of oxygen to produce biogas, a renewable energy source.

Key Calculations

Landfill Capacity Calculation:

Estimating the remaining capacity of a landfill based on waste input and compaction rates.

Waste Diversion Rate:

Percentage of waste diverted from landfills through recycling and composting programs.

Methane Generation Rate (Landfills):

Estimating methane production from landfills for energy recovery projects.

Environmental Regulations and Sustainability

Key Environmental Regulations

Clean Water Act (CWA): Regulates the discharge of pollutants into U.S. waters and sets water quality standards.

Clean Air Act (CAA):

Regulates air emissions from stationary and mobile sources to protect public health and the environment.

Resource Conservation and Recovery Act (RCRA):

Governs the management of solid and hazardous waste, including generation, transportation, treatment, storage, and disposal.

Comprehensive Environmental Response,

Compensation, and Liability Act (CERCLA): Provides a framework for cleaning up abandoned or uncontrolled hazardous waste sites.

National Environmental Policy Act (NEPA):

Requires federal agencies to assess the environmental impacts of proposed actions and consider alternatives.

Sustainability Metrics

Metric	Description and Significance
Carbon Footprint	Total greenhouse gas emissions caused by an organization, event, product, or person.
Water Footprint	Total volume of freshwater used to produce goods and services.
Ecological Footprint	Measure of human demand on the Earth's ecosystems.
Life Cycle Assessment (LCA)	Assessment of the environmental impacts associated with all stages of a product's life, from cradle to grave.
Material Flow Analysis (MFA)	Systematic assessment of the flows and stocks of materials within a defined system.

Sustainable Practices

Reduce, Reuse, Recycle:

Minimize waste generation and maximize resource utilization.

Energy Efficiency:

Implement measures to reduce energy consumption and greenhouse gas emissions.

Water Conservation:

Implement water-saving technologies and practices to reduce water usage.

Green Infrastructure:

Use natural systems to manage stormwater and enhance urban environments.

Sustainable Procurement:

Purchase products and services that have a reduced environmental impact.