
Software Engineering Principles Cheatsheet
A quick reference guide covering fundamental software engineering principles, methodologies, and best practices. This cheat sheet is designed to

help software engineers at all levels in designing, developing, and maintaining high-quality software.

Core Principles

SOLID Principles

S - Single Responsibility Principle (SRP):

A class should have only one reason to change.

Example:

Instead of a class handling both database

connections and business logic, separate these

into distinct classes.

O - Open/Closed Principle (OCP):

Software entities should be open for extension,

but closed for modification.

Example:

Use inheritance or composition to add new

functionality without altering existing code.

L - Liskov Substitution Principle (LSP):

Subtypes must be substitutable for their base

types without altering the correctness of the

program.

Example:

If a function takes an object of type ‘Animal’, it

should also work correctly with objects of type

‘Dog’ or ‘Cat’.

I - Interface Segregation Principle (ISP):

Clients should not be forced to depend on

methods they do not use.

Example:

Instead of one large interface, create multiple

smaller interfaces specific to client needs.

D - Dependency Inversion Principle (DIP):

Depend upon abstractions, not concretions.

High-level modules should not depend on low-

level modules. Both should depend on

abstractions.

Example:

Use dependency injection to inject dependencies

into classes rather than creating dependencies

within the class.

DRY Principle

Don’t Repeat Yourself (DRY):

Avoid duplication of code and logic.

Benefits:

Improved maintainability

Reduced risk of errors

Easier refactoring

Example:

Create a reusable function or class instead of

copying and pasting code.

KISS Principle

Keep It Simple, Stupid (KISS):

Design systems to be as simple as possible.

Benefits:

Easier to understand

Easier to maintain

Reduced complexity

Example:

Avoid over-engineering a solution when a simpler

solution is sufficient.

YAGNI Principle

You Ain’t Gonna Need It (YAGNI):

Avoid adding functionality until deemed

necessary.

Benefits:

Reduced complexity

Faster development

Avoidance of unnecessary code

Example:

Do not implement a feature ‘just in case’ it might

be needed in the future.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
https://cheatsheetshero.com/


Design Patterns

Creational Patterns

Singleton Ensures only one instance of a class

is created and provides a global

point of access to it.

Factory

Method

Defines an interface for creating an

object, but lets subclasses alter the

type of objects that will be created.

Abstract

Factory

Provides an interface for creating

families of related or dependent

objects without specifying their

concrete classes.

Builder Separates the construction of a

complex object from its

representation, allowing the same

construction process to create

different representations.

Prototype Specifies the kinds of objects to

create using a prototypical

instance, and create new objects

by copying this prototype.

Structural Patterns

Adapter Allows incompatible interfaces to

work together. Converts the

interface of a class into another

interface clients expect.

Bridge Decouples an abstraction from its

implementation so that the two can

vary independently.

Composite Composes objects into tree

structures to represent part-whole

hierarchies. Composite lets clients

treat individual objects and

compositions uniformly.

Decorator Dynamically adds responsibilities to

an object. Decorators provide a

flexible alternative to subclassing

for extending functionality.

Facade Provides a unified interface to a set

of interfaces in a subsystem.

Facade defines a higher-level

interface that makes the subsystem

easier to use.

Flyweight Uses sharing to support large

numbers of fine-grained objects

efficiently.

Proxy Provides a surrogate or placeholder

for another object to control access

to it.

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Behavioral Patterns

Chain of

Responsibility

Avoids coupling the sender of a

request to its receiver by giving

more than one object a chance

to handle the request. Chain the

receiving objects and pass the

request along the chain until an

object handles it.

Command Encapsulates a request as an

object, thereby letting you

parameterize clients with

different requests, queue or log

requests, and support undoable

operations.

Interpreter Given a language, define a

representation for its grammar

along with an interpreter that

uses the representation to

interpret sentences in the

language.

Iterator Provides a way to access the

elements of an aggregate

object sequentially without

exposing its underlying

representation.

Mediator Defines an object that

encapsulates how a set of

objects interact. Mediator

promotes loose coupling by

keeping objects from referring

to each other explicitly, and lets

you vary their interaction

independently.

Memento Without violating

encapsulation, capture and

externalize an object’s internal

state so that the object can be

restored to this state later.

Observer Defines a one-to-many

dependency between objects

so that when one object

changes state, all its

dependents are notified and

updated automatically.

State Allows an object to alter its

behavior when its internal state

changes. The object will appear

to change its class.

Strategy Defines a family of algorithms,

encapsulates each one, and

makes them interchangeable.

Strategy lets the algorithm vary

independently from clients that

use it.

Template

Method

Defines the skeleton of an

algorithm in an operation,

deferring some steps to

subclasses. Template Method

lets subclasses redefine certain

steps of an algorithm without

changing the algorithm’s

structure.

Visitor Represents an operation to be

performed on the elements of

an object structure. Visitor lets

you define a new operation

without changing the classes of

the elements on which it

operates.

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/


Software Development Methodologies

Code Quality and Testing

Agile Methodologies

Overview:

Agile methodologies emphasize iterative

development, collaboration, and flexibility to

adapt to changing requirements.

Key Principles:

Customer satisfaction through early and

continuous delivery

Welcoming changing requirements

Frequent delivery of working software

Close collaboration between business

stakeholders and developers

Self-organizing teams

Continuous attention to technical excellence

Popular Agile Frameworks:

Scrum

Kanban

Extreme Programming (XP)

Scrum

Overview:

An iterative and incremental framework for

managing complex projects.

Key Components:

Roles: Product Owner, Scrum Master,

Development Team

Events: Sprint Planning, Daily Scrum, Sprint

Review, Sprint Retrospective

Artifacts: Product Backlog, Sprint Backlog,

Increment

Kanban

Overview:

A visual system for managing workflow, limiting

work in progress (WIP), and improving flow.

Key Principles:

Visualize the workflow

Limit WIP

Manage flow

Make process policies explicit

Implement feedback loops

Improve collaboratively, evolve

experimentally

Waterfall Methodology

Overview:

A sequential, linear approach to software

development where each phase must be

completed before the next phase can begin.

Phases:

1. Requirements

2. Design

3. Implementation

4. Verification

5. Maintenance

Limitations:

Inflexible to changes

Not suitable for complex or evolving projects

Code Quality Metrics

Cyclomatic

Complexity

Measures the number of

linearly independent paths

through a program’s source

code. Lower values indicate

simpler, more testable code.

Code Coverage Measures the extent to which

the source code of a program

has been tested. Higher

coverage generally indicates

better testing.

Maintainability

Index

Calculates an index value that

represents the relative ease of

maintaining the code. Higher

values are better.

Lines of Code

(LOC)

A simple measure of the size

of a program. Can indicate

complexity and effort required

for maintenance.

Testing Types

Unit Testing Testing individual units or

components of a software

application. Focuses on verifying

that each part of the system

works as expected.

Integration

Testing

Testing the interaction between

different units or components to

ensure they work together

correctly.

System

Testing

Testing the entire system to

ensure it meets the specified

requirements. Conducted after

integration testing.

Acceptance

Testing

Testing conducted by end-users

or stakeholders to determine

whether the system meets their

needs and expectations.

Test-Driven Development (TDD)

Overview:

A software development process in which tests

are written before the code. This helps ensure

that the code is testable and meets the specified

requirements.

Steps:

1. Write a test

2. Run the test and see it fail

3. Write the minimal code to pass the test

4. Run all tests and ensure they pass

5. Refactor the code

Code Review Best Practices

Key Considerations:

Focus on code correctness, clarity, and

maintainability

Provide constructive feedback

Ensure code adheres to coding standards

Check for potential bugs and security

vulnerabilities

Automate code reviews where possible

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

