CHEAT

the password is temppwd.

Updating the System:

sudo apt update

sudo apt upgrade

BeagleBone SBC Cheatsheet

A comprehensive cheat sheet covering the BeagleBone Single Board Computer, including setup, GPIO, and common commands. This guide provides a quick reference for developers and hobbyists using BeagleBone for embedded projects.

Getting Started with BeagleBone

After logging in, update the system using:

Initial Setup

Basic Commands

Connecting to BeagleBone:	pwd	Print working directory.
Connect BeagleBone to your computer via USB. It should appear as a network drive.	15	List directory contents.
	cd	Change directory.
Accessing via SSH:	mkdir	Create a new directory.
Use an SSH client (e.g., PuTTY, Terminal) to connect to the BeagleBone. Default IP address is 192.168.7.2. The default username is debian and	rm	Remove a file.
	nano or vim	Text editors for file editing.

Boot Configuration

U-Boot:

BeagleBone uses U-Boot as its bootloader. Configuration files are located in /boot/uEnv.txt.

Kernel Configuration:

Kernel parameters can be modified via uEnv.txt . Changes require a reboot.

Device Tree Overlays:

Device tree overlays (.dtbo) are used to configure hardware peripherals. Enable overlays by adding lines to uEnv.txt.

Example Overlay Enable:

##Enable I2C1

dt overlay=BB-I2C1-00A0.dtbo

Installing Essential Tools:

Install essential development tools:

sudo apt install git python3-pip buildessential

Configuring Network:

Edit /etc/network/interfaces to set up static IP address or other network configurations.

GPIO Programming

Accessing GPIO

GPIO Pins:

GPIO pins can be accessed via the command line or through programming languages like Python.

Using config-pin :

config-pin is a utility to configure pin modes.

sudo config-pin p9.12 gpio sudo config-pin p9.12 out

Checking Pin State:

Read the value of the GPIO pin:

cat /sys/class/gpio/gpio60/value

Finding the GPIO Number:

Each pin has a GPIO number associated with it. Use the BeagleBone Black System Reference Manual to find the number.

Python GPIO Control

Installing py-gpio :
Install the py-gpio library for Python:
sudo pip3 install py-gpio
Python Code Example:
<pre>import gpio</pre>
<pre>pin = gpio.GPIO(60) # Example GPIO pin pin.export() pin.direction = 'out' pin.value = 1 # Set pin high</pre>
Cleaning Up:
Always unexport the pin when done:

pin.unexport()

Alternative Library - Adafruit BBIO:

Another popular library is Adafruit_BBIO . Install with sudo pip3 install Adafruit_BBIO.

Creating a Custom Overlay:

Create a device tree source (.dts) file. This defines the hardware configuration.

Compiling the Overlay:

Use the device tree compiler to create the .dtbo file:

dtc -O dtb -I dts -o my_overlay.dtbo my_overlay.dts

Example DTS file:

```
/dts-v1/;
/plugin/;
```

```
/{
   compatible = "ti,beaglebone-black";
   fragment@0 {
       target = <&am33xx_pinmux>;
       __overlay__ {
           pinctrl_bonnet_gpio:
pinmux_bonnet_gpio {
              pinctrl-single,pins =
<0x030 (PIN_OUTPUT_PULLUP | MUX_MODE7)>;
/* P9_12, GPI01_28 */
           };
       };
   };
   fragment@1 {
       target = <&ocp>;
        __overlay___ {
           bonnet_gpio {
               compatible = "gpio-
leds";
gpios = <&gpio1 28 GPI0_ACTIVE_HIGH>;
               status = "okay";
           };
       };
   };
};
```

Networking

Configuring Network Interfaces

Listing Network Interfaces:

Use **ifconfig** or **ip addr** to list available network interfaces.

Editing /etc/network/interfaces :

Manually configure network interfaces by editing //etc/network/interfaces .

auto eth0 iface eth0 inet static address 192.168.1.100 netmask 255.255.255.0 gateway 192.168.1.1 dns-nameservers 8.8.8.8 8.8.4.4

Using dhcpcd :

For dynamic IP configuration, ensure **dhcpcd** is running.

sudo systemctl enable dhcpcd
sudo systemctl start dhcpcd

Peripherals and Hardware

I2C Communication

Enabling I2C:

Ensure I2C is enabled in **uEnv.txt** via device tree overlay. Example:

dt overlay=BB-I2C1-00A0.dtbo

Detecting I2C Devices:

Use (i2cdetect) to scan the I2C bus for connected devices:

sudo i2cdetect -y 1

Using i2cget and i2cset:

Read and write to I2C devices using (i2cget) and (i2cset) respectively.

Wireless Setup

Connecting to Wi-Fi:

Use iwconfig and wpa_supplicant to connect to Wi-Fi networks. First, identify wireless interface using iwconfig

Configuring wpa_supplicant :

Create/edit //etc/wpa_supplicant/wpa_supplicant.conf): network={ ssid="YourNetworkName" psk="YourWiFiPassword" }

Bringing up the interface:

sudo ifconfig wlan0 up sudo wpa_supplicant -i wlan0 -c /etc/wpa_supplicant/wpa_supplicant.conf sudo dhclient wlan0

UART Serial Communication

Accessing UART Ports:

UART ports are available as /dev/tty00, /dev/tty01, etc.

Using minicom :

Use **minicom** or **screen** to communicate over UART. First, install minicom:

sudo apt install minicom

Then, configure minicom:

sudo minicom -s

Example minicom Configuration:

Set serial device to //dev/tty01), baud rate to 115200, and disable hardware flow control.

Firewall Configuration

Using iptables :

iptables is used for setting up firewall rules. Example: Allowing SSH traffic:

sudo iptables -A INPUT -p tcp --dport 22
-j ACCEPT

Saving Rules:

Save iptables rules using iptables-save .

Using ufw (Uncomplicated Firewall):

A more user-friendly firewall configuration tool:

sudo apt install ufw sudo ufw enable sudo ufw allow ssh

PWM

Accessing PWM:

PWM functionality is available via device tree overlays. Enable PWM overlay in **uEnv.txt**.

PWM Control:

Control PWM parameters such as period and duty cycle via /sys/class/pwm/....

Example:

echo 1000000 >

/sys/class/pwm/pwmchip0/pwm0/period
echo 500000 >

/sys/class/pwm/pwmchip0/pwm0/duty_cycle

echo 1 >

/sys/class/pwm/pwmchip0/pwm0/enable