
CPU Architecture and Terminology Cheatsheet
A concise reference for understanding CPU architecture, key terminology, and performance metrics. Useful for students, developers, and anyone

interested in the inner workings of computer hardware.

Core CPU Concepts

CPU Performance Metrics

Fundamental Components

ALU

(Arithmetic

Logic Unit)

Performs arithmetic and logical

operations.

Control Unit Fetches instructions, decodes

them, and controls the

execution flow.

Registers Small, high-speed storage

locations used to hold data and

instructions being processed.

Cache Memory Fast memory used to store

frequently accessed data,

reducing access time to main

memory.

Bus Interface Connects the CPU to other

components like memory and

peripherals.

Clock Provides timing signals to

synchronize operations within

the CPU. Measured in Hertz

(Hz).

CPU Operation Cycle

1. Fetch: Retrieve the instruction from memory.

2. Decode: Interpret the instruction.

3. Execute: Perform the operation specified by

the instruction.

4. Store: Write the result back to memory or a

register.

Instruction Set Architecture (ISA)

Definition Defines the set of

instructions a CPU can

execute. Examples: x86,

ARM, RISC-V.

CISC (Complex

Instruction Set

Computing)

Features a large set of

complex instructions.

Example: x86.

RISC (Reduced

Instruction Set

Computing)

Features a smaller set of

simpler instructions.

Example: ARM.

Clock Speed and IPC

Clock Speed The rate at which a CPU

executes instructions,

measured in GHz. Higher clock

speed generally means faster

performance, but it’s not the

only factor.

IPC

(Instructions

Per Cycle)

The average number of

instructions a CPU can execute

per clock cycle. A higher IPC

indicates a more efficient

architecture.

Relationship Performance is a product of

both clock speed and IPC:

Performance ≈ Clock Speed * 

IPC

Core Count and Multithreading

Core An independent processing

unit within a CPU. More cores

generally allow for better

multitasking and parallel

processing.

Multithreading

(e.g., Hyper-

Threading)

Allows a single core to

execute multiple threads

concurrently, improving

resource utilization. It makes

the operating system

recognize one physical core

as two virtual cores.

Effect on

Performance

More cores and efficient

multithreading improve

performance in multi-

threaded applications and

workloads. However, single-

threaded applications may

not benefit significantly.

Cache Levels

L1

Cache

Smallest and fastest cache, closest to

the core. Usually split into L1i

(instruction cache) and L1d (data

cache).

L2

Cache

Larger and slower than L1, but still

faster than main memory. Serves as a

secondary cache for data not found in

L1.

L3

Cache

Largest and slowest cache, shared by

all cores. Further reduces access time

to main memory.

Other Important Metrics

TDP (Thermal

Design Power)

The maximum amount of

heat a CPU is expected to

dissipate under normal

operating conditions.

Indicates cooling

requirements.

Power

Consumption

The amount of power the

CPU consumes during

operation. Lower power

consumption is desirable for

energy efficiency.

Manufacturing

Process (e.g.,

7nm, 5nm)

Smaller manufacturing

processes generally result in

higher transistor density,

improved performance, and

lower power consumption.

Bandwidth Rate at which data can be

read from or stored into a

storage unit. Represented as

bits per second or bytes per

second.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/210-cpu-architecture-and-terminology-cheatsheet
http://cheatsheetshero.com/user/all/210-cpu-architecture-and-terminology-cheatsheet
http://cheatsheetshero.com/user/all/210-cpu-architecture-and-terminology-cheatsheet
https://cheatsheetshero.com/


CPU Architecture Types

Advanced CPU Features

Desktop and Server CPUs

Characteristics Designed for high performance

and multitasking. Typically have

higher clock speeds, more

cores, and larger caches.

Examples Intel Core i9, AMD Ryzen 9,

Intel Xeon, AMD EPYC

Typical Use Gaming, content creation,

scientific computing, server

applications.

Mobile CPUs

Characteristics Optimized for power efficiency

and battery life. Typically have

lower clock speeds and fewer

cores compared to desktop

CPUs.

Examples ARM Cortex-A series,

Qualcomm Snapdragon, Apple

Silicon (M1, M2)

Typical Use Smartphones, tablets, laptops.

Embedded CPUs

Characteristics Designed for specific tasks in

embedded systems. Often have

low power consumption and

real-time capabilities.

Examples ARM Cortex-M series,

Microchip PIC, Atmel AVR

Typical Use Microcontrollers, IoT devices,

industrial control systems,

automotive electronics.

GPU (Graphics Processing Unit) as a CPU

Characteristics Specialized electronic circuit

designed to rapidly manipulate

and alter memory to accelerate

the creation of images in a

frame buffer intended for

output to a display device.

Examples NVIDIA GeForce, AMD Radeon

Typical Use Video and/or image processing

and rendering.

Virtualization

Definition Allows multiple operating systems to

run concurrently on a single physical

machine. CPU features like Intel VT-x

and AMD-V provide hardware

support for virtualization.

Benefits Improved resource utilization, easier

management, and increased

flexibility.

Security Features

Examples Intel SGX (Software Guard

Extensions), AMD SEV (Secure

Encrypted Virtualization), ARM

TrustZone.

Purpose Provide hardware-based security

features to protect sensitive data and

code from unauthorized access.

SIMD (Single Instruction, Multiple Data)

Definition Allows a single instruction to operate

on multiple data elements

simultaneously, improving

performance in multimedia and

scientific applications. Examples:

Intel SSE, AVX, ARM NEON.

Benefits Faster multimedia processing,

improved scientific computations,

and enhanced gaming performance.

Out-of-Order Execution

Definition A technique where the CPU

executes instructions in a different

order than they appear in the

program, optimizing performance by

avoiding stalls due to data

dependencies.

How it

Works

The CPU dynamically analyzes

instructions and executes them in

the order that maximizes resource

utilization, improving overall

performance.

Branch Prediction

Definition A technique used to predict the

outcome of conditional branch

instructions (e.g., if-then-else

statements) to avoid pipeline stalls.

Importance Accurate branch prediction

reduces the number of pipeline

stalls, improving overall CPU

performance.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

