
Clojure Cheatsheet
A concise reference for Clojure syntax, data structures, functions, and macros, designed to help you quickly recall key elements of the language.

Core Data Structures

Functions and Macros

Control Flow

Basic Data Types

nil Represents null or the absence of a

value.

bool

ean

true  or false

numb

er

Integers, floats, ratios. Example: 1 ,

1.0 , 1/2

stri

ng

Immutable sequence of characters.

Example: "Hello, Clojure!"

keyw

ord

Interned strings, used as keys in maps.

Example: :name

symb

ol

Represents variables or function names.

Example: my-variable

Collections

li

st

Ordered collection. Created with '(1 2 

3) . Implemented as a singly linked list.

ve

cto

r

Indexed collection. Created with [1 2 

3] . Supports efficient random access.

ma

p

Key-value pairs. Created with { :a 1, :b 

2 } . Keys and values can be any type.

se

t

Collection of unique values. Created with

#{ 1 2 3 } .

qu

eu

e

A sequence supporting FIFO semantics.

Created with

clojure.lang.PersistentQueue/EMPTY

and conj  and pop .

Atoms

Atoms provide a mutable reference to an

immutable value.

(def my-atom (atom 0))

(swap! my-atom inc) ; Increment the 

value

@my-atom ; Dereference to get the 

current value

Function Definition

Functions are defined using defn .

(defn my-function [arg1 arg2]

  (+ arg1 arg2))

Anonymous functions can be created with fn

or the reader macro #() .

(fn [x] (* x x))

#(* % %)

Basic Functions

(+ x y) Addition

(- x y) Subtraction

(* x y) Multiplication

(quot x y) Integer division

(rem x y) Remainder

(inc x) Increment

(dec x) Decrement

Macros

Macros are code transformations performed at

compile time. Defined with defmacro .

(defmacro my-macro [arg]

  `(println ~arg))

(my-macro "Hello") ; expands to (println 

"Hello")

Conditionals

if (if condition then else)

whe

n

(when condition & body)  - executes

body if condition is true.

whe

n-

not

(when-not condition & body)  -

executes body if condition is false.

con

d

(cond condition1 expr1 condition2 

expr2 ...)  - multi-branch conditional.

cas

e

(case expr clause1 expr1 clause2 

expr2 ...)  - conditional based on the

value of an expression.

Looping and Iteration

lo

op

(loop [bindings...] & body)  - defines

a recursive loop with initial bindings.

re

cu

r

(recur exprs...)  - jumps back to the

beginning of the innermost loop with

updated bindings.

do

se

q

(doseq [seq-exprs...] & body)  -

iterates over a sequence, executing the

body for each element (side effects only).

do

tim

es

(dotimes [i n] & body)  - executes the

body n  times, with i  bound to the

current iteration number.

fo

r

(for [seq-exprs...] & body)  - list

comprehension, returns a lazy sequence of

the results of evaluating body for each

element.

Exception Handling

try  / catch  / finally

(try

  (/ 1 0)

  (catch ArithmeticException e

    (println "Caught exception:", 

(.getMessage e)))

  (finally

    (println "Finally block executed")))

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
https://cheatsheetshero.com/


Sequences and Collections

Sequence Operations

map (map f coll)  - Applies function f  to each element in coll ,

returning a new sequence.

filt

er

(filter pred coll)  - Returns a new sequence containing only

the elements of coll  for which (pred element)  is true.

redu

ce

(reduce f val coll)  - Reduces coll  using function f ,

starting with initial value val .

tak

e

(take n coll)  - Returns a new sequence containing the first n

elements of coll .

dro

p

(drop n coll)  - Returns a new sequence without the first n

elements of coll .

firs

t

(first coll)  - Returns the first element of coll .

res

t

(rest coll)  - Returns a sequence without the first element of

coll .

con

s

(cons x coll)  - Adds x  to the beginning of coll .

Collection Specific Functions

get (get map key)  - Returns the value associated with key  in

map .

asso

c

(assoc map key val)  - Returns a new map with key

associated with val .

disso

c

(dissoc map key)  - Returns a new map without key .

conj (conj coll val)  - Adds val  to the collection. Behavior

depends on collection type.

coun

t

(count coll)  - Returns the number of elements in coll .

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

