CHEAT
SHEETS

Clojure Cheatsheet

Core Data Structures

Basic Data Types

nil Represents null or the absence of a
value.

bool true or false
ean

numb Integers, floats, ratios. Example: 1 ,
er 1.0, 1/2

stri Immutable sequence of characters.
ng Example: "Hello, Clojure!"

keyw Interned strings, used as keys in maps.
ord Example: :name

symb Represents variables or function names.
ol Example: my-variable

Functions and Macros
Function Definition
Functions are defined using defn .
(defn my-function [argl arg2]

(+ argl arg2))

Anonymous functions can be created with fn
or the reader macro #() .

(fn [x] (* x x))
#(* % %)

Control Flow

Conditionals

if (if condition then else)

whe (when condition & body) - executes
n body if condition is true.

whe (when-not condition & body) -

n- executes body if condition is false.

not

con (cond conditionl expril condition2

d expr2 ...) -multi-branch conditional.

cas (case expr clausel exprl clause2

e expr2 ...) -conditional based on the

value of an expression.

Page 1 of 2

A concise reference for Clojure syntax, data structures, functions, and macros, designed to help you quickly recall key elements of the language.

Collections

1i Ordered collection. Created with ' (1 2

st 3) . Implemented as a singly linked list.

ve Indexed collection. Created with [1 2
cto 3] . Supports efficient random access.

r

ma Key-value pairs. Created with { :a 1, :b
p 2 } .Keys and values can be any type.

se Collection of unique values. Created with
t #{ 12373} .

qu A sequence supporting FIFO semantics.
eu Created with
e clojure.lang.PersistentQueue/EMPTY
and conj and pop .

Basic Functions

(+ xy) Addition

(- xy) Subtraction

(* xvy) Multiplication
(quot x vy) Integer division
(rem x y) Remainder
(inc x) Increment
(dec x) Decrement

Looping and Iteration

1o (loop [bindings...] & body) - defines

op a recursive loop with initial bindings.

re (recur exprs...) -jumps back to the
cu beginning of the innermost loop with

r updated bindings.

do (doseq [seq-exprs...] & body) -
se iterates over a sequence, executing the
q body for each element (side effects only).

do (dotimes [i n] & body) - executesthe

tim body n times,with i bound to the
es current iteration number.

fo (for [seq-exprs...] & body) -list
r comprehension, returns a lazy sequence of
the results of evaluating body for each
element.

Atoms

Atoms provide a mutable reference to an
immutable value.
(def my-atom (atom 0))
(swap! my-atom inc) , Increment the
value
@my-atom ,; Dereference to get the

current value

Macros

Macros are code transformations performed at
compile time. Defined with defmacro .

(defmacro my-macro [arg]

“(println ~arg))

(my-macro "Hello") ,; expands to (println

"Hello")

Exception Handling

try / catch / finally

(try
(/1 0)
(catch ArithmeticException e
(println "Caught exception:",
(.getMessage e)))
(finally
(println "Finally block executed")))

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
https://cheatsheetshero.com/

Sequences and Collections

Sequence Operations

map

filt

er

redu

ce

tak

dro

firs

res

con

Page 2 of 2

(map f coll) - Appliesfunction f toeachelementin coll ,
returning a new sequence.

(filter pred coll) - Returnsanew sequence containing only
the elements of coll forwhich (pred element) istrue.

(reduce f val coll) -Reduces coll using function f ,
starting with initial value val .

(take n coll) - Returnsanew sequence containing the first n
elements of coll .

(drop n coll) - Returnsanew sequence without the first n
elements of coll .

(first coll) - Returns the first element of coll .

(rest coll) - Returnsa sequence without the first element of
coll .

(cons x coll) -Adds x tothe beginning of coll .

Collection Specific Functions

o]

[

get

asso

disso

conj

coun

(get map key)

map .

- Returns the value associated with key in

(assoc map key val) - Returnsanew map with key

associated with

val .

(dissoc map key) - Returnsanew map without key .

(conj coll val) -Adds val to the collection. Behavior

depends on collection type.

(count coll)

- Returns the number of elementsin coll .

https://cheatsheetshero.com

https://cheatsheetshero.com/

