
Prolog Cheat Sheet
A concise reference for Prolog syntax, predicates, and common programming patterns.

Basic Syntax and Data Types

List Manipulation

Arithmetic Operations

Facts and Rules

Facts: Declare relationships between objects.

parent(john, mary). (John is a

parent of Mary)

Rules: Define conditional relationships.

ancestor(X, Y) :- parent(X, Y).

(X is an ancestor of Y if X is a parent of

Y)

ancestor(X, Y) :- parent(X, Z),

ancestor(Z, Y). (X is an ancestor of

Y if X is a parent of Z and Z is an

ancestor of Y)

Queries: Ask questions about the relationships.

?- parent(john, mary). (Is John a

parent of Mary?)

?- ancestor(john, Y). (Who are

John’s descendants?)

Data Types

Atoms: Constants, starting with a

lowercase letter.

Examples: john , mary , cat

Numbers: Integers and floating-point

numbers.

Examples: 1 , 3.14 , -5

Variables: Start with an uppercase letter or

underscore.

Examples: X , Y , _Result

Structures: Complex terms, combining a

functor (name) and arguments.

Example: book(title, author)

Lists: Ordered collections of terms.

Example: [1, 2, 3] , [a, b, c]

[Head | Tail] - Represents a list

with Head as the first element and

Tail as the rest of the list.

Operators

:

-

Rule definition (if).

, Conjunction (and).

; Disjunction (or).

= Unification (attempt to make terms

identical).

\

=

Not unifiable.

Basic List Operations

Lists are a fundamental data structure in Prolog.

They are enclosed in square brackets [] and

elements are separated by commas.

[Head | Tail] notation is used to represent a

list, where Head is the first element and Tail

is the rest of the list.

Predicates for List Manipulation

member(X,

List)

Succeeds if X is an element of

List .

?- member(b, [a, b, c]).

true.

append(List

1, List2,

List3)

Succeeds if List3 is the result

of appending List1 and

List2 .

?- append([a, b], [c, d],

X).

X = [a, b, c, d].

length(List

, Length)

Succeeds if Length is the

length of List .

?- length([a, b, c], X).

X = 3.

reverse(Lis

t,

ReversedList

)

Succeeds if ReversedList is

the reverse of List .

?- reverse([a, b, c], X).

X = [c, b, a].

Example: Defining `member`

member(X, [X | _]). % X is a member if

it's the head.

member(X, [_ | Tail]) :- member(X,

Tail). % Otherwise, check the tail.

Basic Arithmetic

is Used to evaluate arithmetic expressions.

X is Expression assigns the result of

Expression to X .

Note: The right-hand side must be fully

evaluable.

+, -,

*, /

Standard arithmetic operators.

mo

d

Modulo operator (remainder of division).

X is 7 mod 2. (X will be 1)

Comparison Operators

=:= Arithmetic equality (values are equal).

=\= Arithmetic inequality (values are not

equal).

<, >,

=<, >=

Less than, greater than, less than or

equal to, greater than or equal to.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
https://cheatsheetshero.com/

Control Flow and Logic

Example: Factorial

factorial(0, 1). % Base case: factorial

of 0 is 1.

factorial(N, F) :- % Recursive case:

 N > 0, % N must be greater

than 0.

 N1 is N - 1, % Calculate N - 1.

 factorial(N1, F1), % Calculate

factorial of N - 1.

 F is N * F1. % F is N *

factorial(N-1).

Cut (`!`)

The cut (!) is a goal that always succeeds, but

with a side effect: it commits Prolog to the

choices made so far in the current rule.

It prevents backtracking.

Use with caution, as it can make programs harder

to understand and debug.

Negation as Failure

\+

Goal

Succeeds if Goal fails.

This is negation as failure: Prolog

assumes something is false if it

cannot prove it to be true.

Example:

different(a, b). would succeed,

while different(a, a). would fail.

different(X, Y) :- \+ X = Y.

Conditional Predicates

Prolog doesn’t have explicit if-then-else

statements like imperative languages.

Instead, conditional logic is achieved through

multiple rules and the use of cuts.

Example:

If X >= Y , the first rule succeeds (and the cut

prevents backtracking to the second rule).

Otherwise, the second rule is tried.

max(X, Y, X) :- X >= Y, !.

max(X, Y, Y) :- Y > X.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

