
PL/SQL Cheatsheet
A concise reference for PL/SQL, covering syntax, data types, control structures, and common operations for Oracle database programming.

PL/SQL Basics

Block Structure

PL/SQL code is organized into blocks. A block can

be anonymous or named (a stored procedure,

function, or trigger).

DECLARE

 -- Declaration of variables, types,

etc.

BEGIN

 -- Executable statements

EXCEPTION

 -- Exception handling (optional)

END;

/

The DECLARE section is optional and used to

define variables, constants, cursors, and user-

defined types.

Variables are declared with a name, data type,

and optional initial value:

variable_name data_type :=

initial_value;

The BEGIN section contains the executable

statements. This is where the main logic of the

PL/SQL block resides. Statements are executed

sequentially.

The EXCEPTION section is optional and provides

error handling. When an exception occurs, the

control is transferred to this section.

Exception handlers are defined for specific

exceptions or for all exceptions.

Data Types

NUMB

ER

Numeric data type for storing integers

and floating-point numbers.

NUMBER(p,s) where p is precision

and s is scale.

VARC

HAR2(

size

)

Variable-length character string with a

maximum size specified in bytes.

DAT

E

Stores date and time values.

BOOL

EAN

Stores logical values: TRUE , FALSE , or

NULL .

CLO

B

Character Large Object, for storing large

amounts of text data (up to 4GB).

Variables and Constants

Variables are declared in the DECLARE section

and are used to store data during the execution

of the PL/SQL block.

Constants are declared using the CONSTANT

keyword. Their value cannot be changed after

initialization.

variable_name data_type [:=

initial_value];

constant_name CONSTANT data_type :=

value;

Referencing Database Columns:

This declares a variable with the same data type

as a specified column in a database table.

variable_name

table_name.column_name%TYPE;

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/361-pl-sql-cheatsheet
http://cheatsheetshero.com/user/all/361-pl-sql-cheatsheet
http://cheatsheetshero.com/user/all/361-pl-sql-cheatsheet
https://cheatsheetshero.com/

Control Structures

Conditional Statements

IF-THEN-ELSE

IF condition THEN

 -- Statements to execute if the

condition is true

[ELSIF condition THEN

 -- Statements to execute if the

condition is true]

[ELSE

 -- Statements to execute if all

conditions are false]

END IF;

CASE Statement

CASE selector

 WHEN value1 THEN

 -- Statements for value1

 WHEN value2 THEN

 -- Statements for value2

 [ELSE

 -- Default statements]

END CASE;

Looping Structures

Basic

LOOP
LOOP

 -- Statements to execute

 EXIT WHEN condition;

END LOOP;

WHILE

LOOP
WHILE condition LOOP

 -- Statements to execute

while the condition is true

END LOOP;

FOR

LOOP

The REVERSE keyword iterates in

descending order.

FOR index IN [REVERSE]

lower_bound .. upper_bound

LOOP

 -- Statements to execute

END LOOP;

Cursors

Cursors allow you to process rows returned by a

SQL query one at a time.

Explicit Cursors

DECLARE

 CURSOR cursor_name IS

 SELECT column1, column2 FROM

table_name WHERE condition;

 record_name cursor_name%ROWTYPE;

BEGIN

 OPEN cursor_name;

 LOOP

 FETCH cursor_name INTO record_name;

 EXIT WHEN cursor_name%NOTFOUND;

 -- Process record_name

 END LOOP;

 CLOSE cursor_name;

END;

Cursor Attributes

%FOUND : Boolean attribute that is TRUE if a

fetch returns a row, FALSE otherwise.

%NOTFOUND : Boolean attribute that is TRUE

if a fetch does not return a row, FALSE

otherwise.

%ISOPEN : Boolean attribute that is TRUE if

the cursor is open, FALSE otherwise.

%ROWCOUNT : Number of rows fetched from

the cursor.

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Exception Handling

Stored Procedures and Functions

Exception Handling Block

The EXCEPTION section handles errors that

occur during the execution of the BEGIN

section.

EXCEPTION

 WHEN exception_name THEN

 -- Handle the exception

 WHEN OTHERS THEN

 -- Handle any other exception

END;

Predefined Exceptions: NO_DATA_FOUND ,

TOO_MANY_ROWS , INVALID_CURSOR ,

ZERO_DIVIDE , etc.

User-Defined Exceptions: Can be declared and

raised explicitly using RAISE statement.

DECLARE

 my_exception EXCEPTION;

BEGIN

 IF condition THEN

 RAISE my_exception;

 END IF;

EXCEPTION

 WHEN my_exception THEN

 -- Handle my_exception

END;

Common Exceptions

NO_DATA

_FOUND

Raised when a SELECT statement

returns no rows.

TOO_MAN

Y_ROWS

Raised when a SELECT INTO

statement returns more than one

row.

INVALID

_CURSOR

Raised when an invalid cursor

operation is performed.

ZERO_DI

VIDE

Raised when an attempt is made to

divide by zero.

DUP_VAL

_ON_INDE

X

Raised when attempting to insert a

duplicate value into a unique index.

RAISE_APPLICATION_ERROR

Used to return user-defined error messages from

a PL/SQL block to the calling environment.

error_number : An integer between

-20000 and -20999.

message : The error message string (up to

2048 bytes).

TRUE : Error is placed on the stack of

previous errors.

FALSE (default): Error replaces any previous

errors.

RAISE_APPLICATION_ERROR (error_number,

message [, {TRUE | FALSE}]);

Stored Procedures

A stored procedure is a named PL/SQL block that

can accept input parameters and return output

parameters. It is stored in the database and can

be executed by name.

CREATE [OR REPLACE] PROCEDURE

procedure_name (

 parameter1 IN data_type,

 parameter2 OUT data_type

) AS

 -- Declaration section

BEGIN

 -- Executable statements

EXCEPTION

 -- Exception handling

END;

/

Parameter Modes

IN : The parameter is passed to the

procedure.

OUT : The parameter is returned from the

procedure.

IN OUT : The parameter is passed to the

procedure and can be returned with a

modified value.

Functions

A function is a named PL/SQL block that returns a

single value. It is stored in the database and can

be called from SQL statements or other PL/SQL

blocks.

CREATE [OR REPLACE] FUNCTION

function_name (

 parameter1 IN data_type

) RETURN data_type AS

 -- Declaration section

BEGIN

 -- Executable statements

 RETURN value;

EXCEPTION

 -- Exception handling

END;

/

Functions must contain a RETURN statement.

Functions can be called in SQL queries:

SELECT function_name(column1) FROM

table_name;

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Calling Stored Procedures and Functions

Calling a Stored

Procedure
DECLARE

 output_variable

data_type;

BEGIN

procedure_name(input_va

lue, output_variable);

 -- Use

output_variable

END;

/

Calling a

Function

Or directly in a SQL query:

DECLARE

 return_value

data_type;

BEGIN

 return_value :=

function_name(input_val

ue);

 -- Use return_value

END;

/

SELECT

function_name(column1)

FROM table_name;

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

