
AWK Cheatsheet
A concise cheat sheet covering essential AWK syntax, patterns, actions, and built-in functions, designed to help you quickly write and understand

AWK scripts.

AWK Basics

Variables and Operators

Syntax

awk 'pattern { action }' file

AWK scripts consist of patterns and actions. For

each line in the input file , AWK checks if the

pattern matches. If it does, the action is

executed. If no pattern is given, the action is

performed for every input line. If no action is

given, the matching line is printed.

awk '{ print $1 }' file

Prints the first field of each line in file . Fields

are separated by whitespace by default.

awk -F',' '{ print $1, $2 }' file

Uses , as the field separator and prints the first

and second fields of each line.

awk 'BEGIN { print "Start" } { print $0 }

END { print "End" }' file

BEGIN block is executed before processing any

input. END block is executed after processing all

input. The { print $0 } action prints each line

of the input file.

Patterns

BEGIN Executed before any input is read.

END Executed after all input is read.

expres

sion

A boolean expression that determines

whether the action is executed.

Example: $1 > 10

patter

n1,

pattern

2

A range pattern that matches all lines

from a line matching pattern1 to a

line matching pattern2 .

!patte

rn

Negates the pattern. The action is

executed if the line does not match

the pattern.

Actions

print : Prints the current line or specified fields.

Example: print $1, $3

printf : Formatted printing, similar to C’s

printf .

Example: printf "%s: %d\n", $1, $2

next : Skips the current line and proceeds to the

next input line.

exit : Terminates the AWK script.

delete array[index] : Deletes an element from

an array.

Built-in Variables

$0 The entire current line.

$1,

$2,

...

The first, second, … field of the current

line.

NF The number of fields in the current line.

NR The number of the current line.

FILE

NAME

The name of the current input file.

FS The field separator (default is

whitespace). Can be changed with -F

option or by assigning a value to FS .

RS The record separator (default is newline).

OFS The output field separator (default is

whitespace).

ORS The output record separator (default is

newline).

Operators

= Assignment operator.

== , != Equality and inequality operators.

> , < ,

>= , `<=``

Comparison operators.

~ , !~ Regular expression match and non-

match operators.

&& , || ,

!

Logical AND, OR, and NOT

operators.

+ , - ,

* , / ,

^ , %

Arithmetic operators: addition,

subtraction, multiplication, division,

exponentiation, modulus.

++ , -- Increment and decrement

operators.

+= , -= ,

*= , /= ,

%= , ^=

Compound assignment operators.

User-defined Variables

Variables can be defined and used within AWK

scripts.

Example:

BEGIN { count = 0 }

{ count++ }

END { print "Total lines:", count }

Variables are initialized to zero or the empty

string if not explicitly initialized.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/366-awk-cheatsheet
http://cheatsheetshero.com/user/all/366-awk-cheatsheet
http://cheatsheetshero.com/user/all/366-awk-cheatsheet
https://cheatsheetshero.com/

Functions

Examples

Built-in Functions

length(strin

g)

Returns the length of the string.

substr(strin

g, start,

length)

Returns a substring of the string starting at start with

the given length .

index(string

, substring)

Returns the starting position of substring in string ,

or 0 if not found.

split(string

, array,

separator)

Splits the string into elements of the array using

separator as the delimiter. Returns the number of

elements.

match(string

, regex)

Returns the starting position of the regular expression

regex in string , or 0 if not found. Sets RSTART and

RLENGTH .

gsub(regex,

replacement,

string)

Globally substitutes all matches of the regular expression

regex in string with replacement . Returns the

number of substitutions made.

tolower(stri

ng)

Converts the string to lowercase.

toupper(stri

ng)

Converts the string to uppercase.

sprintf(form

at, expr1,

expr2, ...)

Formats expressions expr1 , expr2 , … according to the

format string format (similar to C’s sprintf).

User-Defined Functions

You can define your own functions in AWK.

Syntax:

Example:

function function_name(parameter1, parameter2, ...) {

 # Function body

 return value

}

function max(x, y) {

 return (x > y ? x : y)

}

{ print max($1, $2) }

Simple Examples

Print lines longer than 80 characters:

awk 'length($0) > 80 { print }' file

Print the total number of fields in the input:

awk '{ total += NF } END { print "Total fields:", total }' file

Print lines containing the word ‘error’:

awk '/error/ { print }' file

Print the last field of each line:

awk '{ print $NF }' file

Advanced Examples

Calculate the average of the values in the first field:

awk '{ sum += $1; count++ } END { if (count > 0) print

"Average:", sum / count }' file

Print unique lines in a file:

awk '!seen[$0]++' file

Sum values in a specific column based on a condition:

awk '$2 == "active" { sum += $1 } END { print "Sum of active

values:", sum }' file

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

