
GitLab CI/CD Cheatsheet
A comprehensive cheat sheet for GitLab CI/CD, covering essential concepts, syntax, and best practices for automating your software development

pipeline.

GitLab CI/CD Basics

Advanced Configuration

Core Concepts

CI/CD: Continuous Integration and Continuous

Delivery/Deployment. Automates the software

development lifecycle.

GitLab CI/CD: Integrated CI/CD tool within

GitLab for building, testing, and deploying code.

.gitlab-ci.yml: Configuration file defining the

CI/CD pipeline. Located in the root of your

repository.

Pipeline: A set of stages and jobs defining the

CI/CD process.

Stage: A logical division within a pipeline. Stages

run sequentially.

Job: An individual task within a stage. Jobs run in

parallel within a stage.

Runner: Executes the jobs defined in the

.gitlab-ci.yml file. Can be shared or specific

to a project/group.

Artifacts: Files or directories generated by a job

that can be used by subsequent jobs or

downloaded.

.gitlab-ci.yml Structure

stages:

 - build

 - test

 - deploy

build_job:

 stage: build

 script:

 - echo "Building..."

 - ./build_script.sh

test_job:

 stage: test

 script:

 - echo "Testing..."

 - ./test_script.sh

deploy_job:

 stage: deploy

 script:

 - echo "Deploying..."

 - ./deploy_script.sh

Key Directives

stages Defines the stages of the pipeline

(e.g., build, test, deploy).

image Specifies the Docker image to use

for the job.

script Commands to execute within the

job.

stage Assigns the job to a specific stage.

only / e

xcept

Controls when a job runs based on

branch, tags, etc.

variable

s

Defines environment variables for

the job.

Variables

Define variables

in .gitlab-

ci.yml :

variables:

 MAVEN_CLI_OPTS: "-s

.m2/settings.xml --

batch-mode"

Precedence

(highest to

lowest):

CI/CD variables -> Project

variables -> Group variables -

> Instance variables

Masked variables: Sensitive variables can be

masked in the GitLab UI to

prevent them from being

printed in job logs.

Artifacts

job_name:

 stage: ...

 script: ...

 artifacts:

 paths:

 - path/to/artifact1

 - path/to/artifact2

 expire_in: 1 week

paths - Specifies the files/directories to store

as artifacts.

expire_in - Sets the expiration time for the

artifacts.

Artifacts can be downloaded or passed to

subsequent jobs.

Caching

cache:

 key: "$CI_COMMIT_REF_SLUG"

 paths:

 - .m2/repository

key - A unique key for the cache. Using

$CI_COMMIT_REF_SLUG caches per branch.

paths - Specifies the directories to cache.

Caching can significantly speed up build times by

reusing dependencies and build outputs.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
https://cheatsheetshero.com/

Conditional Execution & Triggers

Best Practices & Tips

Only/Except

only Run job only for specified refs

(branches, tags).

excep

t

Run job for all refs except specified

ones.

Example:
job_name:

 stage: ...

 script: ...

 only:

 - main

 - tags

Rules

More flexible conditional execution based on

various conditions.

job_name:

 stage: ...

 script: ...

 rules:

 - if: '$CI_PIPELINE_SOURCE ==

"merge_request_event"'

 when: always

 - when: never

if - Specifies the condition.

when - Specifies when to run the job (always ,

on_success , on_failure , manual ,

delayed , never).

Pipeline Triggers

Trigger pipelines from other pipelines or external

sources.

trigger_job:

 stage: deploy

 trigger:

 project: group/project

 branch: main

Use trigger: to specify the project and branch

to trigger.

Security

Use masked variables for sensitive information

(passwords, API keys).

Avoid storing secrets directly in .gitlab-

ci.yml .

Regularly audit your CI/CD configuration.

Use GitLab’s security scanning tools to identify

vulnerabilities in your code and dependencies.

Performance

Use caching to reduce build times.

Optimize your Docker images for size and

performance.

Run jobs in parallel whenever possible.

Use GitLab Runner autoscaling to dynamically

scale your runner infrastructure based on

demand.

Maintainability

Keep your .gitlab-ci.yml file organized and

well-documented.

Use templates to reuse common CI/CD

configurations across multiple projects.

Regularly update your CI/CD configuration to

take advantage of new features and

improvements.

Test your CI/CD pipeline thoroughly to ensure it

is working as expected.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

