
Puppet Cheatsheet
A comprehensive cheat sheet covering essential Puppet concepts, syntax, and commands for effective infrastructure management and automation

in DevOps and Cloud environments.

Puppet Fundamentals

Puppet Resources

Core Concepts

Puppet Agent: The client application that runs on

managed nodes and applies configurations.

Puppet Master: The central server that compiles

catalogs and serves them to agents.

Catalog: A document describing the desired

state of a node.

Manifests: Files containing Puppet code that

define resources and configurations.

Modules: Reusable collections of manifests,

templates, and other files.

Resources: Represent individual components of a

system (e.g., files, packages, services).

Facts: Information about a node, such as its

hostname, IP address, operating system, etc.

Facts are automatically discovered by Facter.

Classes: Reusable blocks of Puppet code that

define a specific configuration. Classes are the

primary means of organizing Puppet code.

Puppet Workflow

1. Agent Requests Catalog: Puppet Agent

sends facts to the Puppet Master.

2. Master Compiles Catalog: The Puppet

Master uses facts and manifests to compile a

catalog.

3. Catalog Sent to Agent: The Puppet Master

sends the compiled catalog to the Agent.

4. Agent Applies Catalog: The Puppet Agent

applies the configuration defined in the

catalog.

5. Agent Reports Status: The Agent sends a

report back to the Puppet Master about the

configuration run.

Basic Syntax

Resource

Declaration
file {

'/tmp/example.txt':

 ensure => present,

 content => 'Hello,

world!',

}

Variable

Assignment
$hostname =

$facts['hostname']

Conditional

Statements
if $osfamily ==

'RedHat' {

 package { 'httpd':

 ensure =>

installed,

 }

}

Common Resource Types

file: Manages files and directories.

package: Manages software packages.

service: Manages system services.

user: Manages user accounts.

group: Manages group accounts.

cron: Manages cron jobs.

exec: Executes arbitrary commands.

File Resource Attributes

ensu

re

Specifies whether the file should be

present, absent, a directory, a link, etc.

pat

h

The path to the file.

cont

ent

The content of the file.

sour

ce

The source file to copy content from

(used for templates).

owne

r

The owner of the file.

grou

p

The group of the file.

mod

e

The permissions of the file (e.g., ‘0644’).

Package Resource Attributes

ensu

re

Specifies whether the package should

be installed, absent, or a specific version.

nam

e

The name of the package.

prov

ider

The package provider (e.g., yum, apt,

gem).

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
https://cheatsheetshero.com/

Puppet Modules & Classes

Advanced Puppet Features

Module Structure

A Puppet module typically has the following

directory structure:

manifests/init.pp : Contains the main class

definition.

files/ : Contains static files to be copied to

managed nodes.

templates/ : Contains templates to generate

dynamic configuration files.

metadata.json : Contains metadata about the

module (e.g., name, version, dependencies).

module_name/

├── manifests/

│ └── init.pp

├── files/

├── templates/

└── metadata.json

Defining Classes

Basic Class

Definition
class mymodule {

 # Resource

declarations go here

 file {

'/tmp/example.txt':

 ensure => present,

 content => 'This

file is managed by

Puppet.',

 }

}

Class

Parameters
class mymodule (

 $param1 =

'default_value',

 $param2,

) {

 # Use parameters in

resource declarations

 file {

'/tmp/example.txt':

 ensure => present,

 content =>

"Parameter 1 is

${param1}",

 }

}

Including Classes

incl

ude

Simplest way to include a class. Can

only be used once per class.

include mymodule

requ

ire

Ensures that the class is applied before

the current class.

class {'mymodule':

 require =>

Class['othermodule'],

}

cont

ain

Similar to include, but allows classes to

be declared multiple times.

contain mymodule

Templates

Puppet uses Embedded Ruby (ERB) templates to

generate dynamic configuration files. Templates

are located in the templates/ directory of a

module.

Example (mytemplate.erb):

To use a template in a manifest:

ServerName <%= @hostname %>

DocumentRoot <%= @docroot %>

file { '/etc/httpd/conf/httpd.conf':

 ensure => present,

 source =>

'puppet:///modules/mymodule/mytemplate.e

rb',

}

Facts and Variables

Accessing

Facts
$osfamily = $facts['os']

['family']

if $osfamily == 'RedHat' {

 # Do something specific to

RedHat systems

}

Custom

Facts

Custom facts can be created in

Ruby or as executable scripts. They

are stored in the lib/facter

directory of a module.

Variables
$myvariable = 'somevalue'

file { '/tmp/example.txt':

 ensure => present,

 content => "The variable

is ${myvariable}",

}

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Hiera

Hiera is a key-value lookup tool for Puppet. It

allows you to externalize data from your Puppet

code.

Example (hiera.yaml):

Example (common.yaml):

Using Hiera data in Puppet:

:backends:

 - yaml

:yaml:

 :datadir:

/etc/puppetlabs/code/environments/%

{environment}/data

:hierarchy:

 - "nodes/%{::trusted.certname}"

 - common

ntp::servers:

 - 0.pool.ntp.org

 - 1.pool.ntp.org

class ntp {

 $servers = hiera('ntp::servers', [])

 package { 'ntp':

 ensure => installed,

 }

 file { '/etc/ntp.conf':

 ensure => present,

 content =>

template('ntp/ntp.conf.erb'),

 require => Package['ntp'],

 }

}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

