
JUnit Testing Cheatsheet
A concise reference for writing effective unit tests in Java using JUnit. Covers annotations, assertions, test fixtures, and best practices for robust

testing.

JUnit Fundamentals

Core Annotations

@Test Marks a method as a test case.

JUnit will execute this method

when running tests.

@BeforeEac

h (JUnit 5) /

@Before

(JUnit 4)

Specifies a method to be

executed before each test

method in the class. Used for

setting up test fixtures.

@AfterEac

h (JUnit 5) /

@After

(JUnit 4)

Specifies a method to be

executed after each test method

in the class. Used for tearing

down test fixtures.

@BeforeAl

l (JUnit 5) /

@BeforeCla

ss (JUnit 4)

Specifies a method to be

executed once before any of the

test methods in the class are

executed. Must be static.

@AfterAll

(JUnit 5) /

@AfterClas

s (JUnit 4)

Specifies a method to be

executed once after all of the

test methods in the class have

been executed. Must be static.

@Disabled

(JUnit 5) /

@Ignore

(JUnit 4)

Marks a test method as

disabled/ignored. The test will

not be executed.

Basic Assertions

assertEquals

(expected,

actual)

Asserts that two values are

equal. Can be used with various

data types.

assertTrue(c

ondition)

Asserts that a condition is true.

assertFalse(

condition)

Asserts that a condition is false.

assertNull(o

bject)

Asserts that an object is null.

assertNotNul

l(object)

Asserts that an object is not

null.

assertSame(e

xpected,

actual)

Asserts that two objects refer

to the same object.

assertNotSam

e(expected,

actual)

Asserts that two objects do not

refer to the same object.

Exception Testing

assertThrows(expectedType, executable) -

Asserts that the execution of the supplied

executable throws an exception of the expected

type.

@Test

void testException() {

 IllegalArgumentException exception =

assertThrows(IllegalArgumentException.cl

ass, () -> {

 throw new

IllegalArgumentException("Invalid

argument");

 });

 assertEquals("Invalid argument",

exception.getMessage());

}

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
https://cheatsheetshero.com/

Advanced Assertions & Features

Advanced Assertions (JUnit 5)

assertAll(e

xecutables..

.)

Asserts that all supplied

executables do not throw

exceptions. Useful for grouping

multiple assertions.

@Test

void

testMultipleAssertions() {

 assertAll(

 () ->

assertEquals(2, 1 + 1),

 () -> assertTrue(5

> 3)

);

}

assertTimeo

ut(duration,

executable)

Asserts that the execution of the

supplied executable completes

before the given timeout.

@Test

void testTimeout() {

assertTimeout(Duration.ofS

econds(1), () -> {

 Thread.sleep(500);

 });

}

assertTimeo

utPreemptive

ly(duration,

executable)

Similar to assertTimeout but

terminates the execution

preemptively if the timeout is

exceeded.

@Test

void

testTimeoutPreemptively()

{

assertTimeoutPreemptively(

Duration.ofSeconds(1), ()

-> {

Thread.sleep(2000); //

This will likely fail

 });

}

Assumptions

Assumptions are conditions that must be true for

a test to be meaningful. If an assumption fails, the

test is aborted.

assumeTrue(condition) - Assumes that

the condition is true.

assumeFalse(condition) - Assumes that

the condition is false.

assumingThat(assumption, executable) -

Executes the executable only if the

assumption is met.

@Test

void testWithAssumption() {

assumeTrue(System.getProperty("os.name")

.startsWith("Windows"));

 // This test will only run on

Windows

 assertEquals("C:\\",

System.getProperty("user.home"));

}

Parameterized Tests (JUnit 5)

Parameterized tests allow you to run the same

test multiple times with different input values.

@ParameterizedTest - Marks a method as

a parameterized test.

@ValueSource - Provides a simple array of

literal values as the source of arguments.

@CsvSource - Allows you to specify

multiple arguments as comma-separated

values.

@ParameterizedTest

@ValueSource(ints = { 2, 4, 6 })

void testNumberIsEven(int number) {

 assertTrue(number % 2 == 0);

}

@ParameterizedTest

@CsvSource({"1,one", "2,two",

"3,three"})

void testNumberName(int number, String

name) {

 assertEquals(name,

numberToName(number));

}

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Test Fixtures and Suites

Best Practices

Test Fixtures

Test fixtures provide a fixed baseline for running tests. They ensure that the

tests are executed in a consistent and repeatable environment.

Use @BeforeEach (JUnit 5) / @Before (JUnit 4) to set up the fixture

before each test.

Use @AfterEach (JUnit 5) / @After (JUnit 4) to tear down the fixture

after each test.

Use @BeforeAll (JUnit 5) / @BeforeClass (JUnit 4) to set up the

fixture once before all tests.

Use @AfterAll (JUnit 5) / @AfterClass (JUnit 4) to tear down the

fixture once after all tests.

class MyTest {

 private MyObject obj;

 @BeforeEach

 void setUp() {

 obj = new MyObject();

 obj.initialize();

 }

 @AfterEach

 void tearDown() {

 obj.cleanup();

 obj = null;

 }

 @Test

 void testSomething() {

 // Test using obj

 }

}

Test Suites

Test suites allow you to group multiple test classes into a single execution

unit.

JUnit 4: Use @RunWith(Suite.class) and

@Suite.SuiteClasses({TestClass1.class, TestClass2.class}) .

JUnit 5: Use @Suite and @SelectClasses({TestClass1.class,

TestClass2.class}) .

@RunWith(Suite.class)

@Suite.SuiteClasses({TestClass1.class, TestClass2.class})

public class MyTestSuite {

 // Empty class, acts as a holder for the suite

}

@Suite

@SelectClasses({TestClass1.class, TestClass2.class})

public class MyTestSuite {}

Writing Effective Tests

Test one thing at a time: Each test method should focus on verifying a

single aspect of the code.

Write clear and descriptive test names: Test names should clearly

indicate what is being tested.

Follow the Arrange-Act-Assert pattern: Arrange the test data, act by

invoking the method under test, and assert the expected outcome.

Keep tests independent: Tests should not rely on the state of other

tests.

Test edge cases and boundary conditions: Ensure that the code handles

unusual or extreme inputs correctly.

Write tests that are repeatable and reliable: Tests should produce the

same results every time they are run.

Cover all code paths: Ensure your tests provide sufficient coverage of

your code.

Use meaningful assertion messages: Provide clear messages when

assertions fail to help identify the root cause.

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Mocking

Mocking is a technique used to isolate the code under test from its

dependencies. Mock objects simulate the behavior of real objects, allowing

you to verify interactions and control the test environment.

Mockito: A popular Java mocking framework that provides a simple and

intuitive API.

EasyMock: Another Java mocking framework with similar capabilities.

import org.mockito.Mockito;

import static org.mockito.Mockito.*;

import org.junit.jupiter.api.Test;

class MyServiceTest {

 @Test

 void testDoSomething() {

 MyDependency dependency = mock(MyDependency.class);

 MyService service = new MyService(dependency);

 when(dependency.getValue()).thenReturn(10);

 service.doSomething();

 verify(dependency).getValue();

 }

}

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

