

# **Biomedical Engineering Cheatsheet**

A quick reference guide for key concepts, formulas, and techniques in biomedical engineering, covering biomechanics, biomaterials, bioinstrumentation, and bioimaging.



### **Biomechanics**

#### Stress and Strain

# Viscoelasticity

| Stress (σ)                         | Force per unit area: σ = F/A<br>Where:<br>F = Force (N)<br>A = Area (m <sup>2</sup> )<br>Units: Pascals (Pa) or N/m <sup>2</sup>                     | Viscoelastic materials exhibit both viscous and<br>elastic characteristics when undergoing<br>deformation.<br>Key Concepts:                                                                                                 | Reynolds<br>Number (Re) | Predicts flow regime:<br>Re = (ρvL)/μ<br>Where:<br>ρ = Density (kg/m³)<br>v = Velocity (m/s)                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Strain (ε)                         | Change in length per unit length:<br>$\varepsilon = \Delta L/L_0$<br>Where:<br>$\Delta L = Change in length (m)$<br>$L_0 = Original length (m)$      | <ul> <li>Creep: Time-dependent deformation under<br/>constant load.</li> <li>Stress Relaxation: Time-dependent decrease<br/>in stress under constant strain.</li> <li>Hysteresis: Energy loss during loading and</li> </ul> |                         | L = Characteristic length (m)<br>µ = Dynamic viscosity (Pa·s)<br>Re < 2300: Laminar flow<br>Re > 4000: Turbulent flow                             |
| Young's                            | Strain is dimensionless.<br>Measure of stiffness: $E = \sigma/\epsilon$                                                                              | unloading cycle.                                                                                                                                                                                                            | Viscosity (µ)           | Measure of a fluid's resistance<br>to flow. Units: Pascal-seconds<br>(Pa·s)                                                                       |
| Modulus (E)<br>Shear Stress<br>(τ) | Units: Pascals (Pa) or N/m <sup>2</sup><br>Force acting parallel to the<br>surface per unit area: τ = F/A<br>Units: Pascals (Pa) or N/m <sup>2</sup> | <ul> <li>Maxwell Model: Represents a spring and<br/>dashpot in series.</li> <li>Kelvin-Voigt Model: Represents a spring and<br/>dashpot in parallel.</li> </ul>                                                             | Poiseuille's<br>Law     | Describes laminar flow in a<br>cylindrical tube:<br>Q = (πr <sup>4</sup> ΔP)/(8μL)<br>Where:                                                      |
| Shear Strain<br>(γ)                | Change in angle: γ = Δx/L <sub>0</sub><br>Where:<br>Δx = Displacement (m)<br>L <sub>0</sub> = Original length (m)<br>Strain is dimensionless.        |                                                                                                                                                                                                                             |                         | Q = Flow rate (m³/s)<br>r = Radius of the tube (m)<br>ΔP = Pressure difference (Pa)<br>μ = Dynamic viscosity (Pa·s)<br>L = Length of the tube (m) |
| Shear<br>Modulus (G)               | Measure of resistance to shear<br>deformation: G = τ/y<br>Units: Pascals (Pa) or N/m²                                                                |                                                                                                                                                                                                                             |                         |                                                                                                                                                   |

### **Biomaterials**

#### **Material Properties**

| Biocompatibility         | The ability of a material to<br>perform with an appropriate<br>host response in a specific<br>application.               | <ul> <li>Metals:</li> <li>Stainless steel, titanium alloys, cobalt-<br/>chromium alloys.</li> <li>Used in implants, prosthetics, and surgical</li> </ul>                                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biodegradability         | The ability of a material to degrade or be absorbed in                                                                   | instruments.                                                                                                                                                                                                         |
|                          | the body.                                                                                                                | Ceramics:                                                                                                                                                                                                            |
| Surface<br>Properties    | Surface energy, roughness,<br>and chemical composition<br>affect protein adsorption and<br>cell adhesion.                | <ul> <li>Alumina, zirconia, hydroxyapatite.</li> <li>Used in bone grafts, dental implants, and coatings.</li> </ul>                                                                                                  |
| Mechanical<br>Properties | Tensile strength,<br>compressive strength,<br>Young's modulus, and<br>Poisson's ratio determine<br>structural integrity. | <ul> <li>Polymers:</li> <li>Polyethylene, polypropylene, silicone, poly(lactic acid) (PLA), poly(glycolic acid) (PGA).</li> <li>Used in sutures, drug delivery systems, and tissue engineering scaffolds.</li> </ul> |

#### Composites:

- Combination of two or more materials (e.g., carbon fiber reinforced polymers).
- Used in load-bearing implants.

#### **Biomaterial Degradation**

Fluid Mechanics

| Hydrolysis               | Chemical breakdown of a material due to reaction with water. |
|--------------------------|--------------------------------------------------------------|
| Enzymatic<br>Degradation | Breakdown of a material by enzymes present in the body.      |
| Oxidation                | Chemical degradation due to reaction with oxygen.            |
| Corrosion                | Electrochemical degradation of metals.                       |

#### **Bioinstrumentation**

# Sensors and Transducers

|                        |                                                                           | - |
|------------------------|---------------------------------------------------------------------------|---|
| Strain Gauge           | Measures strain by detecting changes in electrical resistance.            |   |
| Thermistor             | Measures temperature by<br>detecting changes in electrical<br>resistance. |   |
| Pressure<br>Transducer | Measures pressure by<br>converting it into an electrical<br>signal.       |   |
| Electrode              | Measures electrical potential differences (e.g., ECG, EEG).               |   |

# Signal Processing

# Amplification Filtering

Analog-to-Digital Conversion (ADC)

Digital Signal Processing (DSP)

### Common Instruments

| Electrocardiograph<br>(ECG)    | Records electrical activity of the heart. |
|--------------------------------|-------------------------------------------|
| Electroencephalograph<br>(EEG) | Records electrical activity of the brain. |
| Electromyograph (EMG)          | Records electrical activity of muscles.   |
| Blood Pressure Monitor         | Measures arterial blood pressure.         |

# Bioimaging

#### Imaging Modalities

| X-ray                                       | Uses electromagnetic<br>radiation to create images of<br>bones and dense tissues.        |
|---------------------------------------------|------------------------------------------------------------------------------------------|
| Computed<br>Tomography (CT)                 | Uses X-rays to create cross-<br>sectional images of the<br>body.                         |
| Magnetic<br>Resonance<br>Imaging (MRI)      | Uses magnetic fields and<br>radio waves to create<br>detailed images of soft<br>tissues. |
| Ultrasound                                  | Uses sound waves to create<br>real-time images of organs<br>and tissues.                 |
| Positron<br>Emission<br>Tomography<br>(PET) | Uses radioactive tracers to visualize metabolic activity in the body.                    |

# Image Processing

| Image Enhance                        | ment                                                                          |
|--------------------------------------|-------------------------------------------------------------------------------|
| Image Segment                        | ation                                                                         |
| Image Registrat                      | tion                                                                          |
| Image Reconstr                       | ruction                                                                       |
| Contrast Agent                       | ts                                                                            |
|                                      |                                                                               |
| lodine-based                         | Used in CT scans to enhance<br>the visibility of blood vessels<br>and organs. |
| lodine-based<br>Gadolinium-<br>based | the visibility of blood vessels                                               |