
Graph Algorithms Cheatsheet
A quick reference guide to graph algorithms, commonly used in coding interviews. Covers fundamental algorithms, their complexities, and common

use cases.

Graph Representations & Basics

Breadth-First Search (BFS)

Graph Representations

Adjacency

Matrix

A 2D array where matrix[i][j] represents whether an

edge exists between vertices i and j .

Space Complexity: O(V^2)

Good for: Dense graphs (many edges).

Adjacency

List

An array of lists, where each list adj[i] stores the

neighbors of vertex i .

Space Complexity: O(V + E)

Good for: Sparse graphs (few edges).

Edge List A list of tuples, where each tuple (u, v, w) represents an

edge from vertex u to vertex v with weight w .

Space Complexity: O(E)

Good for: Simple graph representation, useful for

certain algorithms.

Basic Graph Properties

Vertex (Node) A fundamental unit in a graph. Represented by a unique

identifier.

Edge A connection between two vertices. Can be directed or

undirected.

Directed Edge: (u -> v) : Edge from u to v

only.

Undirected Edge: (u <-> v) : Edge between u

and v in both directions.

Weight A value assigned to an edge, representing cost, distance,

or other metric.

Path A sequence of vertices connected by edges.

Cycle A path that starts and ends at the same vertex.

Connected

Graph

A graph where there is a path between every pair of

vertices.

BFS Overview

BFS is a graph traversal algorithm that explores

the graph level by level, starting from a given

source vertex. It uses a queue to maintain the

order of vertices to visit.

Time Complexity: O(V + E)

Space Complexity: O(V)

Use Cases: Finding the shortest path in

unweighted graphs, web crawling, social

networking searches.

BFS Algorithm Steps

1. Initialize a queue and add the source vertex

to it.

2. Mark the source vertex as visited.

3. While the queue is not empty:

Dequeue a vertex u from the queue.

For each neighbor v of u :

If v is not visited:

Enqueue v .

Mark v as visited.

BFS Example (Python)

from collections import deque

def bfs(graph, start):

 visited = set()

 queue = deque([start])

 visited.add(start)

 while queue:

 vertex = queue.popleft()

 print(vertex, end=" ") #

Process the vertex

 for neighbor in graph[vertex]:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.append(neighbor)

Example graph

graph = {

 'A': ['B', 'C'],

 'B': ['A', 'D', 'E'],

 'C': ['A', 'F'],

 'D': ['B'],

 'E': ['B', 'F'],

 'F': ['C', 'E']

}

bfs(graph, 'A') # Output: A B C D E F

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/402-graph-algorithms-cheatsheet
http://cheatsheetshero.com/user/all/402-graph-algorithms-cheatsheet
http://cheatsheetshero.com/user/all/402-graph-algorithms-cheatsheet
https://cheatsheetshero.com/

Depth-First Search (DFS)

Dijkstra's Algorithm

DFS Overview

DFS is a graph traversal algorithm that explores as

far as possible along each branch before

backtracking. It uses a stack (implicitly through

recursion) to keep track of the vertices to visit.

Time Complexity: O(V + E)

Space Complexity: O(V) (in the worst case,

for recursive calls)

Use Cases: Detecting cycles in a graph,

topological sorting, solving mazes.

DFS Algorithm Steps

1. Mark the current vertex as visited.

2. For each neighbor v of the current vertex:

If v is not visited:

Recursively call DFS on v .

DFS Example (Python)

def dfs(graph, vertex, visited):

 visited.add(vertex)

 print(vertex, end=" ") # Process

the vertex

 for neighbor in graph[vertex]:

 if neighbor not in visited:

 dfs(graph, neighbor,

visited)

Example graph

graph = {

 'A': ['B', 'C'],

 'B': ['A', 'D', 'E'],

 'C': ['A', 'F'],

 'D': ['B'],

 'E': ['B', 'F'],

 'F': ['C', 'E']

}

visited = set()

dfs(graph, 'A', visited) # Output: A B D

E F C

Dijkstra's Overview

Dijkstra’s algorithm is used to find the shortest

paths from a source vertex to all other vertices in

a weighted graph (with non-negative edge

weights).

Time Complexity: O(V^2) (with adjacency

matrix), O(E log V) (with priority queue)

Space Complexity: O(V)

Use Cases: Finding shortest routes in

navigation systems, network routing.

Dijkstra's Algorithm Steps

1. Initialize distances to all vertices as infinity,

except the source vertex which is set to 0.

2. Create a set of unvisited vertices.

3. While the set of unvisited vertices is not

empty:

Select the unvisited vertex with the

smallest distance (using a priority queue

for efficiency).

For each neighbor v of the selected

vertex u :

Calculate the distance to v

through u .

If this distance is shorter than the

current distance to v :

Update the distance to v .

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Dijkstra's Example (Python)

import heapq

def dijkstra(graph, start):

 distances = {vertex:

float('infinity') for vertex in graph}

 distances[start] = 0

 pq = [(0, start)]

 while pq:

 dist, vertex = heapq.heappop(pq)

 if dist > distances[vertex]:

 continue

 for neighbor, weight in

graph[vertex].items():

 distance = dist + weight

 if distance <

distances[neighbor]:

 distances[neighbor] =

distance

 heapq.heappush(pq,

(distance, neighbor))

 return distances

Example graph (weighted)

graph = {

 'A': {'B': 5, 'C': 2},

 'B': {'A': 5, 'D': 1, 'E': 4},

 'C': {'A': 2, 'F': 9},

 'D': {'B': 1, 'E': 6},

 'E': {'B': 4, 'D': 6, 'F': 3},

 'F': {'C': 9, 'E': 3}

}

start_node = 'A'

shortest_paths = dijkstra(graph,

start_node)

print(f"Shortest paths from

{start_node}: {shortest_paths}")

Expected output (order may vary

slightly due to heapq):

Shortest paths from A: {'A': 0, 'B':

5, 'C': 2, 'D': 6, 'E': 9, 'F': 11}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

