
Playwright Testing & Debugging Cheatsheet
A comprehensive cheat sheet covering Playwright's testing and debugging features, including selectors, assertions, debugging techniques, and

advanced configurations.

Selectors & Locators

Assertions

Debugging Techniques

Basic Selectors

page.locator('

text=Submit')

Selects an element

containing the text ‘Submit’.

page.locator('

button')

Selects all <button>

elements.

page.locator('

#id')

Selects an element with the

ID ‘id’.

page.locator('

.class')

Selects all elements with the

class ‘class’.

page.locator('

input[name="na

me"]')

Selects an <input> element

with the name attribute

‘name’.

Combining Selectors

page.locator

('div >

button')

Selects <button> elements

that are direct children of

<div> elements.

page.locator

('div.contain

er

button.primar

y')

Selects <button> elements

with class ‘primary’ inside

<div> elements with class

‘container’.

page.locator

('ul li:nth-

child(2)')

Selects the second

element inside a

element.

Locator Methods

.first() Selects the first matching

element.

.last() Selects the last matching

element.

.nth(index

)

Selects the element at the

specified index.

.filter({

hasText:

'text' })

Filters elements to only include

those containing the specified

text.

.locator(':

scope >

div')

Find only immediate children

div elements.

Core Assertions

expect(page).to

HaveURL(url)

Asserts that the page has

the specified URL.

expect(locator)

.toBeVisible()

Asserts that the element is

visible.

expect(locator)

.toBeEnabled()

Asserts that the element is

enabled.

expect(locator)

.toHaveText(text

)

Asserts that the element has

the specified text.

expect(locator)

.toHaveAttribute

(name, value)

Asserts that the element has

the specified attribute and

value.

expect(locator)

.toHaveCount(cou

nt)

Asserts that the locator

resolves to the specified

number of elements.

Advanced Assertions

expect(page).t

oHaveTitle(titl

e)

Asserts that the page has the

specified title.

expect(locator

).toHaveCSS(nam

e, value)

Asserts that the element has

the specified CSS property

and value.

expect(locator

).toHaveValue(v

alue)

Asserts that the element has

the specified value.

expect(locator

).toContainText

(text)

Asserts that the element

contains the specified text.

expect(locator

).not.toBeVisib

le()

Asserts that the element is

not visible (negative

assertion).

Soft Assertions

Playwright does not have built-in soft assertions.

You can implement your own using

try...catch blocks or custom assertion

libraries.

Example:

try {

 expect(locator).toBeVisible();

} catch (error) {

 console.warn('Assertion failed:

Element not visible');

}

Debugging in VS Code

1. Install the Playwright VS Code extension.

2. Set breakpoints in your test code.

3. Run your tests in debug mode using the

extension’s UI or the DEBUG=pw:api

environment variable.

DEBUG=pw:api npx playwright test

Playwright Inspector

The Playwright Inspector is a GUI tool to help you

debug your tests. It allows stepping through test

execution, inspecting the DOM, and generating

selectors.

Run tests in debug mode:

This opens the inspector, pauses execution at the

first action, and allows stepping through the test.

npx playwright test --debug

Browser DevTools

You can use the browser’s DevTools for

debugging:

1. Set headless: false in your Playwright

configuration.

2. Use page.pause() in your test to pause

execution and open DevTools.

await page.pause();

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/404-playwright-testing-debugging-cheatsheet
http://cheatsheetshero.com/user/all/404-playwright-testing-debugging-cheatsheet
http://cheatsheetshero.com/user/all/404-playwright-testing-debugging-cheatsheet
https://cheatsheetshero.com/

Advanced Configuration

Tracing

Playwright’s tracing feature records detailed

information about test executions, including

network requests, console logs, and screenshots.

1. Configure tracing in

playwright.config.js :

2. View the trace using npx playwright show-

trace trace.zip .

use: {

 trace: 'on-first-retry',

},

Console Logging

Use console.log() statements in your test

code to output debugging information to the

console.

Example:

console.log('Current URL:', page.url());

Test Configuration File

The playwright.config.js file configures

Playwright’s behavior. Key settings include use ,

projects , reporter , and timeout .

Example:

module.exports = {

 use: {

 baseURL: 'http://localhost:3000',

 headless: true,

 viewport: { width: 1280, height: 720

},

 },

 timeout: 30000,

};

Environment Variables

BASE_URL=http://ex

ample.com npx

playwright test

Sets the base URL for

the tests.

HEADLESS=false npx

playwright test

Runs tests in headed

mode (shows the

browser).

DEBUG=pw:api npx

playwright test

Enables debug logging

for Playwright API calls.

Test Retries

Configure test retries in playwright.config.js

to handle flaky tests.

module.exports = {

 retries: 2,

};

Timeouts

timeout Sets the global timeout for

tests in

playwright.config.js (in

milliseconds).

expect(locato

r).toBeVisible

({ timeout:

5000 })

Sets a custom timeout for a

specific assertion.

page.goto(url

, { timeout:

10000 })

Sets a custom timeout for

page navigation.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

