
SystemVerilog Cheatsheet
A concise reference for SystemVerilog syntax and constructs, covering data types, operators, procedural statements, and verification features.

Data Types & Declarations

Operators & Expressions

Procedural Statements

Basic Data Types

log

ic

Two-state type, can be 0 or 1. Preferred

for synthesizable designs.

re

g

Historically used for sequential logic

outputs; now largely replaced by logic .

bi

t

Two-state, unsigned data type.

in

t

32-bit signed integer.

rea

l

64-bit floating-point number.

tim

e

64-bit unsigned integer representing

simulation time.

Arrays

Fixed-size

array

logic [7:0] data [0:15]; //

16 elements, each 8 bits wide.

Dynamic

array

int dyn_array[]; dyn_array =

new[array_size];

Associative

array

bit [63:0] assoc_array

[string]; // Index with string.

User-Defined Types

typed

ef

typedef logic [3:0] nibble_t;

nibble_t my_nibble;

struc

t
typedef struct {

 logic valid;

 logic [7:0] data;

} packet_t;

packet_t my_packet;

enum
typedef enum {IDLE, READ, WRITE}

state_t;

state_t current_state;

Arithmetic Operators

+ , - ,

* , / , %

Addition, subtraction,

multiplication, division, modulo.

** Exponentiation.

Logical Operators

&& ,

|| , !

Logical AND, OR, NOT. Operates on

boolean values (1 or 0).

Bitwise Operators

& , | ,

^ , ~

Bitwise AND, OR, XOR, NOT.

Operates on individual bits.

~& , ~| ,

~^

Bitwise NAND, NOR, XNOR.

Reduction Operators

& ,

| ,

^

Reduction AND, OR, XOR. Operates on

all bits of a vector to produce a single-

bit result.

Shift Operators

<< , >> ,

<<< ,

>>>

Logical left shift, logical right shift,

arithmetic left shift, arithmetic right

shift.

Comparison Operators

== , != ,

=== ,

!==

Equality, inequality, case equality,

case inequality. Case equality

considers X and Z.

> , < ,

>= , <=

Greater than, less than, greater than

or equal to, less than or equal to.

Sequential Blocks

alway

s_com

b

Combinational logic block. Re-

evaluates whenever any of its inputs

change.

alway

s_ff

Sequential logic block. Used for

describing flip-flops and registers.

alway

s_latc

h

Latch inferrence. Avoid using latches in

synchronous design.

Conditional Statements

if-else
if (condition) begin

 // statements

end else begin

 // statements

end

case
case (expression)

 value1: statement;

 value2: statement;

 default: statement;

endcase

Loop Statements

for
for (int i = 0; i < 10; i++)

begin

 // statements

end

while
while (condition) begin

 // statements

end

repea

t
repeat (8) begin

 // statements

end

Task and Function

tas

k

Can consume simulation time. Can have

input, output, and inout arguments.

func

tion

Cannot consume simulation time.

Returns a single value. Can only have

input arguments.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
https://cheatsheetshero.com/

Verification Features

Assertions

assert

propert

y

Checks if a property holds true. Can

be used for functional coverage.

cover

propert

y

Collects coverage information based

on property evaluation.

Constrained Random Verification

rand Specifies that a variable should be

randomized.

constr

aint

Defines constraints that the random

values must satisfy.

Coverage

Functional

Coverage

Measure of how well the design’s

functionality has been exercised

during verification. Check

covergroup and coverpoint

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

