
JSON Formatting Cheatsheet
A comprehensive guide to JSON formatting, covering syntax, data types, best practices, and tools for creating readable and maintainable JSON

documents.

JSON Basics & Syntax

Formatting Best Practices

Core Concepts

JSON (JavaScript Object Notation): A lightweight data-interchange format

that is easy for humans to read and write and easy for machines to parse and

generate.

Based on a subset of JavaScript syntax.

Uses key-value pairs and ordered lists.

Platform independent and widely supported.

Data Types: JSON supports several primitive data types:

string : Unicode string, enclosed in double quotes.

number : Integer or floating-point number.

boolean : true or false .

null : Represents an empty value.

object : A collection of key-value pairs, enclosed in curly braces {} .

array : An ordered list of values, enclosed in square brackets [] .

Syntax Rules

Key-Value

Pairs

Keys must be strings enclosed in double quotes. Values can

be any of the supported JSON data types.

Example:

{"name": "John Doe", "age": 30}

Objects A collection of key-value pairs, enclosed in curly braces {} .

Example:

{ "city": "New York", "country": "USA" }

Arrays An ordered list of values, enclosed in square brackets [] .

Example:

["apple", "banana", "cherry"]

Nesting JSON objects and arrays can be nested to represent complex

data structures.

Example:

{

 "name": "Jane Doe",

 "address": {

 "street": "123 Main St",

 "city": "Anytown"

 }

}

Indentation

Use consistent indentation to improve readability.

A common practice is to use 2 or 4 spaces for

each level of indentation. Avoid using tabs as

they can be interpreted differently by different

editors.

Example (2 spaces):

Example (4 spaces):

{

 "name": "John",

 "age": 30

}

{

 "name": "John",

 "age": 30

}

Line Breaks

Insert line breaks after each comma to separate

key-value pairs in objects and elements in arrays.

This makes the structure easier to follow.

Example:

{

 "name": "John",

 "age": 30,

 "city": "New York"

}

Consistent Quotes

Always use double quotes for strings. JSON

specification requires keys to be enclosed in

double quotes as well.

Valid:

{"name": "John"}

Invalid:

{'name': 'John'} (single quotes are not valid)

Avoiding Trailing Commas

Do not include trailing commas after the last key-

value pair in an object or the last element in an

array. Trailing commas are invalid JSON and can

cause parsing errors.

Invalid:

Valid:

{

 "name": "John",

 "age": 30,

}

{

 "name": "John",

 "age": 30

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
https://cheatsheetshero.com/

Advanced Formatting & Tools

Common Issues & Solutions

JSON Validators

Use JSON validators to ensure your JSON

documents are well-formed and valid. Validators

can catch syntax errors, incorrect data types, and

other issues.

Online Validators:

JSONLint (jsonlint.com)

JSONFormatter (jsonformatter.org)

Command-line Tools:

jq (a lightweight and flexible command-

line JSON processor)

python -m json.tool (Python’s built-in

JSON validator)

JSON Formatters/Beautifiers

Use formatters to automatically indent and add

line breaks to your JSON documents, making

them more readable.

Online Formatters:

JSONFormatter.org

FreeFormatter.com

Text Editor Plugins:

VS Code: Prettier, JSON Tools

Sublime Text: Pretty JSON

Atom: atom-beautify

Schema Validation

Use JSON Schema to define the structure and

data types of your JSON documents. This helps

ensure data consistency and can be used to

validate JSON documents programmatically.

Key Concepts:

$schema : Specifies the JSON Schema

version.

type : Defines the data type (e.g., string ,

number , object , array).

properties : Defines the properties of an

object and their types.

required : Specifies which properties are

mandatory.

enum : Restricts a value to a predefined set

of values.

Example:

{

 "$schema": "http://json-

schema.org/draft-07/schema#",

 "type": "object",

 "properties": {

 "name": { "type": "string" },

 "age": { "type": "integer",

"minimum": 0 }

 },

 "required": ["name", "age"]

}

Encoding Issues

Ensure your JSON documents are encoded in

UTF-8 to support a wide range of characters.

Incorrect encoding can lead to parsing errors or

data corruption.

Solution:

Save your JSON files in UTF-8 encoding.

Specify the encoding in the Content-Type

header when sending JSON data over HTTP

(application/json; charset=utf-8).

Escaping Special Characters

Special characters in strings, such as double

quotes, backslashes, and control characters, must

be escaped using backslashes.

Common Escape Sequences:

\" : Double quote

\\ : Backslash

\/ : Forward slash

\b : Backspace

\f : Form feed

\n : Newline

\r : Carriage return

\t : Tab

\uXXXX : Unicode character (e.g., \u00A9

for the copyright symbol)

Large Numbers

JavaScript’s Number type can only accurately

represent integers up to a certain limit

(Number.MAX_SAFE_INTEGER). For larger

numbers, consider using strings to avoid

precision issues.

Example:

{

 "id": "12345678901234567890" // Store

large numbers as strings

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

