
Ansible Cheatsheet
A concise reference guide for Ansible, covering essential concepts, modules, and commands for effective infrastructure automation.

Core Concepts

Playbooks & Syntax

Key Components

Control

Node

The machine where Ansible is

installed and from which plays are

executed.

Managed

Nodes

The servers or devices being

managed by Ansible.

Inventory A list of managed nodes, organized

into groups. Can be a simple text

file or a dynamic inventory script.

Modules Reusable, standalone scripts that

Ansible uses to perform tasks on

managed nodes. Examples: copy ,

file , apt .

Tasks A single unit of work defined in a

playbook, calling a specific module

with specific arguments.

Playbooks YAML files that define a set of

tasks to be executed on managed

nodes. Orchestrates the

configuration management

process.

Idempotency

Ansible modules are designed to be idempotent,

meaning they only make changes if necessary to

bring the system to the desired state. This

prevents unintended side effects from repeated

playbook runs.

Ansible Configuration Files

ans

ible

.cf

g

Main configuration file for Ansible. Sets

defaults for inventory location, module

paths, etc. Can be located in

/etc/ansible/ , ~/.ansible.cfg , or

the current directory.

Basic Playbook Structure

- hosts: all

 become: true

 tasks:

 - name: Example Task

 module_name: module_options

hosts : Specifies the target hosts or groups

from the inventory.

become : Escalates privileges (runs tasks as

root).

tasks : A list of tasks to be executed.

Common Modules

apt Manages apt packages (install, remove,

update).

yum Manages yum packages (install,

remove, update).

copy Copies files to managed nodes.

file Manages file attributes (permissions,

ownership, symlinks).

servi

ce

Manages services (start, stop, restart,

reload).

user Manages user accounts.

templ

ate

Templates a file out to a remote

system.

Variables

Variables can be defined in inventory files,

playbook files, or as command-line arguments.

Example:

vars:

 http_port: 8080

tasks:

 - name: Configure web server

 template:

 src: webserver.conf.j2

 dest: /etc/webserver.conf

 vars:

 port: "{{ http_port }}"

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/431-ansible-cheatsheet
http://cheatsheetshero.com/user/all/431-ansible-cheatsheet
http://cheatsheetshero.com/user/all/431-ansible-cheatsheet
https://cheatsheetshero.com/

Commands & Usage

Advanced Features

Common Commands

ansible --

version

Displays the Ansible version.

ansible-

playbook

playbook.ym

l

Executes an Ansible playbook.

ansible all

-m ping

Runs the ping module on all

hosts in the inventory to check

connectivity.

ansible-

galaxy

install

<role_name>

Installs an Ansible role from

Ansible Galaxy.

ansible-

vault

encrypt

<file>

Encrypts a file using Ansible

Vault.

ansible-

vault

decrypt

<file>

Decrypts a file using Ansible

Vault.

Inventory Management

Ansible uses an inventory file to define the

managed nodes. The default location is

/etc/ansible/hosts . You can specify a

different inventory file using the -i option.

Example:

[webservers]

web1.example.com

web2.example.com

[databases]

db1.example.com

db2.example.com

Ad-Hoc Commands

Ad-hoc commands are a quick way to execute

single tasks on managed nodes without writing a

full playbook.

Example:

This command executes the uptime command

on all hosts in the webservers group.

ansible webservers -m shell -a 'uptime'

Roles

Roles are a way to organize and reuse Ansible

content. A role typically includes tasks, variables,

handlers, and templates.

Directory Structure:

my_role/

├── tasks/

│ └── main.yml

├── handlers/

│ └── main.yml

├── vars/

│ └── main.yml

├── templates/

│ └── ...

└── meta/

 └── main.yml

Handlers

Handlers are tasks that are only executed when

notified by another task. This is useful for

restarting services after a configuration change.

Example:

tasks:

 - name: Update webserver config

 template:

 src: webserver.conf.j2

 dest: /etc/webserver.conf

 notify: Restart webserver

handlers:

 - name: Restart webserver

 service:

 name: apache2

 state: restarted

Loops

Loops allow you to repeat a task multiple times

with different values.

Example:

tasks:

 - name: Create users

 user:

 name: "{{ item }}"

 state: present

 loop:

 - user1

 - user2

 - user3

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

