
Sorting Algorithms Cheat Sheet
A concise cheat sheet covering common sorting algorithms, their time complexities, and pseudocode for quick reference during coding interviews

and algorithm analysis.

Basic Sorting Algorithms

Divide and Conquer Sorting

Bubble Sort

Description: Repeatedly steps through the

list, compares adjacent

elements and swaps them if

they are in the wrong order.

Time

Complexity:

Worst/Avg: O(n^2), Best: O(n)

(when nearly sorted)

Space

Complexity:

O(1)

Pseudocode:
for i = 0 to n-1:

 for j = 0 to n-i-1:

 if arr[j] > arr[j+1]:

 swap(arr[j],

arr[j+1])

Use Cases: Rarely used in practice due to its

inefficiency on large datasets.

Good for small, nearly sorted

datasets.

Selection Sort

Description: Finds the minimum element in

each iteration and places it at

the beginning.

Time

Complexity:

O(n^2) (always)

Space

Complexity:

O(1)

Pseudocode:
for i = 0 to n-1:

 min_idx = i

 for j = i+1 to n:

 if arr[j] <

arr[min_idx]:

 min_idx = j

 swap(arr[i],

arr[min_idx])

Use Cases: Simple to implement but

generally inefficient for large

datasets. Performs well

compared to bubble sort.

Insertion Sort

Description: Builds the final sorted array one

item at a time. It is much less

efficient on large lists than more

advanced algorithms such as

quicksort, heapsort, or merge

sort.

Time

Complexity:

Worst/Avg: O(n^2), Best: O(n)

(when nearly sorted)

Space

Complexity:

O(1)

Pseudocode:
for i = 1 to n-1:

 key = arr[i]

 j = i-1

 while j >= 0 and arr[j]

> key:

 arr[j+1] = arr[j]

 j = j-1

 arr[j+1] = key

Use Cases: Efficient for small datasets or

nearly sorted data. Often used as

a subroutine in more complex

sorting algorithms.

Merge Sort

Description: Divides the array into halves, recursively sorts each half,

and then merges the sorted halves.

Time

Complexity:

O(n log n) (always)

Space

Complexity:

O(n)

Pseudocode:
mergeSort(arr, l, r):

 if l < r:

 m = (l + r) / 2

 mergeSort(arr, l, m)

 mergeSort(arr, m+1, r)

 merge(arr, l, m, r)

Use Cases: Guaranteed O(n log n) performance, suitable for large

datasets. Used in external sorting.

Quick Sort

Description: Picks an element as a pivot and partitions the array

around the pivot. Average case is very efficient.

Time

Complexity:

Worst: O(n^2), Avg: O(n log n), Best: O(n log n)

Space

Complexity:

O(log n) average, O(n) worst (due to recursion stack)

Pseudocode:
quickSort(arr, low, high):

 if low < high:

 pi = partition(arr, low, high)

 quickSort(arr, low, pi - 1)

 quickSort(arr, pi + 1, high)

Use Cases: Generally the fastest sorting algorithm in practice.

Sensitive to pivot selection.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
https://cheatsheetshero.com/

Advanced Sorting Algorithms

Sorting Algorithm Summary

Heap Sort

Description: Uses a binary heap data structure to sort the array. In-

place algorithm.

Time

Complexity:

O(n log n) (always)

Space

Complexity:

O(1)

Pseudocode:
heapSort(arr):

 buildMaxHeap(arr)

 for i = n-1 to 0:

 swap(arr[0], arr[i])

 heapify(arr, 0, i)

Use Cases: Guaranteed O(n log n) performance, in-place, but

generally slower than quicksort in practice.

Radix Sort

Description: Sorts integers by processing individual digits. Non-

comparison based sorting.

Time

Complexity:

O(nk) where k is the number of digits in the largest

number.

Space

Complexity:

O(n+k)

Pseudocode:
radixSort(arr, n):

 for digit = 0 to k:

 countSort(arr, n, digit)

Use Cases: Efficient for integers when the range of digits is known.

Can be faster than comparison sorts under certain

conditions.

Time and Space Complexity Comparison

Algorithm Best Case Average Case Worst Case Space Complexity

Bubble Sort O(n) O(n^2) O(n^2) O(1)

Selection Sort O(n^2) O(n^2) O(n^2) O(1)

Insertion Sort O(n) O(n^2) O(n^2) O(1)

Merge Sort O(n log n) O(n log n) O(n log n) O(n)

Quick Sort O(n log n) O(n log n) O(n^2) O(log n) avg, O(n) worst

Heap Sort O(n log n) O(n log n) O(n log n) O(1)

Radix Sort O(nk) O(nk) O(nk) O(n+k)

Choosing the Right Sorting Algorithm

Small Datasets: Insertion sort is often the fastest.

Large Datasets: Merge sort or quicksort are generally preferred.

Nearly Sorted Data: Insertion sort or bubble sort (with optimization) can

be very efficient.

Memory Constraints: Heap sort is an in-place algorithm.

Specific Data Types: Radix sort can be very efficient for integers.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

