CHEAT
SHEETS

and algorithm analysis.

Basic Sorting Algorithms

Sorting Algorithms Cheat Sheet

A concise cheat sheet covering common sorting algorithms, their time complexities, and pseudocode for quick reference during coding interviews

Bubble Sort Selection Sort Insertion Sort
Description: Repeatedly steps through the Description: Finds the minimum element in Description: Builds the final sorted array one
list, compares adjacent each iteration and places it at item at a time. It is much less
elements and swaps them if the beginning. efficient on large lists than more
h inth . . Igorith h
they are in the wrong order Time 0(n"2) (always) ad\./aknce(tzl zgorlt ntns such as
Time Worst/Avg: O(n”2), Best: O(n) Complexity: quicksort, heapsort, or merge
. sort.
Complexity: (when nearly sorted) Space o0
. Time Worst/Avg: O(n"2), Best: O(n)
Space o(1) Complexity: .
. Complexity: (when nearly sorted)
Complexity:
Pseudocode: for i 0 to n1 s o)
i= -1:
Pseudocode:) pace .
for i = 0 to n-1: min_idx = i Complexity:
for j =0 to n-i-1: for j = i+1 to n: Pseudocode: .
if arr[j] > arr[j+1]: if arr[j] < for i =1 ton-1:
swap(arr[j], arr[min_idx]: key = arr[i]
) j = i-1
arr[j+1]) min_idx = j I
. while j >= 0 and arr[j]
swap(arr[i],
Use Cases: Rarely used in practice due to its L > key:
. . arr[min_idx])
inefficiency on large datasets. arr[j+1] = arr[j]
Good for small, nearly sorted) . A
datasets y Use Cases: Simple to implement but j=31
’ generally inefficient for large arr[j+1] = key
datasets. Performs well
compared to bubble sort. Use Cases: Efficient for small datasets or

Divide and Conquer Sorting

nearly sorted data. Often used as
a subroutine in more complex
sorting algorithms.

Merge Sort Quick Sort
Description: Divides the array into halves, recursively sorts each half, Description: Picks an element as a pivot and partitions the array
and then merges the sorted halves. around the pivot. Average case is very efficient.
Time O(n log n) (always) Time Worst: O(n”2), Avg: O(n log n), Best: O(n log n)
Complexity: Complexity:
Space o(n) Space O(log n) average, O(n) worst (due to recursion stack)
Complexity: Complexity:
Pseudocode: Pseudocode:
mergeSort(arr, 1, r): quickSort(arr, low, high):
if 1 <r: if low < high:
m=(1+r)/2 pi = partition(arr, low, high)
mergeSort(arr, 1, m) quickSort(arr, low, pi - 1)
mergeSort(arr, m+l, r) quickSort(arr, pi + 1, high)
merge(arr, 1, m, r)
Use Cases: Generally the fastest sorting algorithm in practice.
Use Cases: Guaranteed O(n log n) performance, suitable for large Sensitive to pivot selection.
datasets. Used in external sorting.
Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
https://cheatsheetshero.com/

Advanced Sorting Algorithms

Heap Sort Radix Sort
Description: Uses a binary heap data structure to sort the array. In- Description: Sorts integers by processing individual digits. Non-
place algorithm. comparison based sorting.
Time O(n log n) (always) Time O(nk) where k is the number of digits in the largest
Complexity: Complexity: number.
Space o(1) Space O(n+k)
Complexity: Complexity:
Pseudocode: Pseudocode: .
heapSort(arr): radixSort(arr, n):
buildMaxHeap(arr) for digit = 0 to k:
for i = n-1 to 0: countSort(arr, n, digit)

swap(arr[0], arr[i])

heapify(arr, ®, i) Use Cases: Efficient for integers when the range of digits is known.
Can be faster than comparison sorts under certain
Use Cases: Guaranteed O(n log n) performance, in-place, but conditions.
generally slower than quicksort in practice.
Sorting Algorithm Summary
Time and Space Complexity Comparison Choosing the Right Sorting Algorithm
Algorithm Best Case Average Case Worst Case Space Complexity + Small Datasets: Insertion sort is often the fastest.
Bubble Sort o(n) 0(n*2) o(n*2) o) « Large Datasets: Merge sort or quicksort are generally preferred.
Selection Sort O(n"2) o(h"2) o(h"2) o) = Nearly Sorted Data: Insertion sort or bubble sort (with optimization) can
i be very efficient.
Insertion Sort O(n) 0o(n"2) O(n"2) o(1)
= Memory Constraints: Heap sort is an in-place algorithm.
Merge Sort O(nlogn) O(nlogn) O(nlog n) O(n)
- Specific Data Types: Radix sort can be very efficient for integers.
Quick Sort O(nlogn) O(nlogn) 0(n*2) O(log n) avg, O(n) worst
Heap Sort O(nlogn) O(nlogn) O(nlog n) o(1)
Radix Sort O(nk) O(nk) O(nk) O(n+k)

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

