
Testing and Debugging Cheat Sheet
A comprehensive cheat sheet covering essential testing and debugging techniques, tools, and strategies for software development. This guide

provides a quick reference to help developers write robust and reliable code.

Testing Fundamentals

Debugging Techniques

Testing Types

Unit Testing Tests individual components or

functions in isolation.

Integration

Testing

Tests the interaction between

different components.

System

Testing

Tests the entire system to

ensure it meets requirements.

Acceptance

Testing

Tests the system from the user’s

perspective to validate it meets

their needs.

Regression

Testing

Retests previously tested

components after changes to

ensure no new issues were

introduced.

Performance

Testing

Tests the system’s

responsiveness, stability, and

scalability under various load

conditions.

Test-Driven Development (TDD)

1. Write a failing test before writing any code.

2. Write the minimum amount of code to pass

the test.

3. Refactor the code to improve its structure

and maintainability.

TDD promotes writing clean, testable code and

ensures that all code is covered by tests.

Test Automation

Automated tests can be run repeatedly and

consistently, saving time and reducing the risk of

human error.

Popular tools include Selenium, JUnit, pytest, and

Cypress.

Benefits include faster feedback, improved test

coverage, and reduced testing costs.

Debugging Strategies

Print

Statements

Insert print statements to display

variable values and track the

program’s execution flow.

print(f'Value of x: {x}')

Debuggers Use debuggers to step through

code, inspect variables, and set

breakpoints. Examples: pdb

(Python), gdb (C/C++), Chrome

DevTools (JavaScript).

Logging Implement logging to record

events, errors, and warnings for

later analysis.

Example (Python):

import logging

logging.basicConfig(level=

logging.DEBUG)

logging.debug('This is a

debug message')

Code

Reviews

Have peers review your code to

identify potential bugs and

improve code quality.

Rubber Duck

Debugging

Explain the code to an inanimate

object (e.g., a rubber duck) to

help clarify your thinking and

identify errors.

Divide and

Conquer

Isolate the problem by

systematically eliminating

sections of code until the bug is

found.

Common Debugging Tools

IDEs (Integrated Development

Environments): Provide built-in debugging

tools, code completion, and other features.

Debuggers: Standalone tools for stepping

through code and inspecting variables.

Linters: Static analysis tools that identify

potential code quality issues and bugs.

Analyzing Stack Traces

A stack trace shows the sequence of function

calls that led to an error. Use it to identify the

source of the error and understand the program’s

execution path.

Key information includes function names, line

numbers, and file names.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
https://cheatsheetshero.com/

Assertion and Error Handling

Advanced Testing Topics

Assertions

Purpose Verify assumptions in code during

development. If an assertion fails, it

indicates a bug.

Example

(Python)
def divide(a, b):

 assert b != 0, 'Cannot

divide by zero'

 return a / b

Usage Use assertions to check

preconditions, postconditions, and

invariants.

Exception Handling

Purpose Handle unexpected errors

gracefully to prevent program

crashes. Use try-except blocks

to catch and handle exceptions.

Example

(Python)
try:

 result = 10 / 0

except ZeroDivisionError as

e:

 print(f'Error: {e}')

Best

Practices

Catch specific exceptions, log

errors, and provide informative

error messages.

Error Reporting

Implement robust error reporting mechanisms to

capture and log errors in production

environments. This helps in identifying and fixing

issues quickly.

Tools like Sentry, Rollbar, and Bugsnag can be

used to track and manage errors.

Mocking

Definition Creating simulated objects or

functions to isolate and test

specific parts of the code. This

allows you to test in isolation

without dependencies.

Example

(Python)
from unittest.mock import

Mock

Create a mock object

mock_obj = Mock()

Set a return value for a

method

mock_obj.some_method.return_

value = 42

Use the mock object in

tests

result =

mock_obj.some_method()

assert result == 42

Fuzzing

Definition A testing technique that involves

feeding invalid, unexpected, or

random data to a program to identify

vulnerabilities and bugs.

Tools AFL (American Fuzzy Lop), libFuzzer,

and Peach Fuzzer.

Static Analysis

Definition Analyzing source code without

executing it to identify potential

errors, security vulnerabilities, and

code quality issues.

Tools SonarQube, FindBugs, and ESLint.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

