

Cybersecurity Protocols Cheatsheet

A quick reference guide to essential cybersecurity protocols, their functions, and configurations, designed to help security professionals and developers implement robust security measures.

Encryption Protocols

SSL/TLS		IPsec		SSH	
Purpose:	Secures communication over netw data between client and server.	or Runpose pts	Secures IP communications by authenticating and encrypting	Purpose:	Provides secure remote access to systems; encrypts
Function:	Uses certificates to authenticate the negotiates encryption algorithms a		each IP packet. Operates at the network layer; provides security for VPNs and other network connections.	Function:	communication channels. Uses public-key cryptography to authenticate clients and encrypt data; replaces insecure protocols like Telnet and FTP.
Configuration:	Configured on web servers; require SSL/TLS certificate obtained from Authority (CA).				
		Configuration:	Configured on routers, firewalls,		
Cipher Suites:	Negotiate encryption algorithm. Ex TLS_ECDHE_RSA_WITH_AES_128_ TLS_AES_256_GCM_SHA384.	· ·	and servers; involves setting up Security Associations (SAs) using IKE.	Configuration:	Configured on servers; involves setting up SSH keys
Common	Certificate expiration, weak cipher	Protocols: suites,	Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Key Exchange (IKE).		and configuring SSH daemon (sshd).
Issues:	protocol downgrade attacks (e.g., F BEAST).	OODLE,		Authentication Methods:	Password authentication, public-key authentication, Kerberos, GSSAPI.
Best Practices:	Regularly update certificates, use s suites, disable SSLv3/TLS 1.0, enfor with HSTS.	strong cipher Common rice HTTPS Issues:	NAT traversal issues, incorrect SA configuration, key management complexities.		
				Common Issues:	Weak password policies, insecure SSH configurations,
		Best Practices:	Use strong encryption algorithms (e.g., AES), implement perfect forward secrecy (PFS), regularly update keys.		brute-force attacks.
				Best Practices:	Disable password authentication, use public-key authentication, regularly update SSH server, use fail2ban to block brute-force attacks.

Authentication Protocols

Kerberos RADIUS LDAP Purpose: Provides strong authentication Purpose: Provides centralized Purpose: Provides directory services for for client/server applications authentication, authorization, managing user accounts, using secret-key cryptography. and accounting (AAA) for resources, and policies. network access. Function: Relies on a trusted third party Function: Allows applications to (Key Distribution Center - KDC) Function: Authenticates users connecting authenticate users and retrieve to authenticate users and issue to network devices (e.g., information from a directory. tickets. routers, switches, wireless Configuration: Configured on LDAP servers; access points). Configuration: Configured on domain involves setting up directory controllers; involves setting up Configuration: Configured on RADIUS servers; structure and user accounts. realms and registering services. involves setting up clients **Operations:** Bind, search, add, modify, (network devices) and user Components: Authentication Server (AS), delete accounts. Ticket Granting Server (TGS), Common LDAP injection, anonymous Attributes: Kerberos clients. Username, password, service Issues: binds, weak access controls. type, Framed-IP-Address, NAS-Common Clock synchronization issues, **Best Practices:** IP-Address. Disable anonymous binds, Issues: KDC compromise, replay enforce strong access controls, attacks. Common Shared secret compromise, sanitize user inputs, use LDAP Issues: dictionary attacks, denial-of-Best over TLS (LDAPS). Maintain clock synchronization, service attacks. Practices: secure KDC, regularly update Kerberos software, monitor for **Best Practices:** Use strong shared secrets, suspicious activity. implement rate limiting, monitor for suspicious activity, use RADIUS over IPsec.

Network Security Protocols

DNSSEC		HTTPS		SFTP	
Purpose:	Secures the Domain Name System (DNS) by adding cryptographic signatures to DNS records.	Purpose:	Secure version of HTTP which enables encrypted communication with Transport Layer Security (TLS) or Secure	Purpose:	Secure File Transfer Protocol. Provides secure file transfer over a reliable data stream. Uses SSH to establish secure
Function:	Prevents DNS spoofing and cache poisoning attacks by verifying the authenticity of	Function:	Sockets Layer (SSL) Protects the integrity and confidentiality of data transmitted between web browsers and web servers	Function:	connections Performs all operations over an encrypted SSH transport.
Configuration:	DNS data. Configured on DNS servers; involves generating and managing cryptographic keys and signing DNS zones.			Configuration:	SFTP server is part of SSH server package.
		Configuration:	Requires an SSL/TLS certificate to be installed on the web server. The server is configured to listen for incoming connections on port 443	Common Issues:	Man-in-the-middle attacks, brute force attacks.
Record Types:	RRSIG, DNSKEY, DS, NSEC.			Best Practices:	Enforce strong password policies, monitor SFTP activity,
Common Issues:	Key management complexities, zone signing errors, algorithm vulnerabilities.	Protocols:	TLS (Transport Layer Security) and SSL (Secure Sockets Layer)	Therees.	use key-based authentication, disable password-based authentication.
Best Practices:	Regularly rotate keys, use strong cryptographic algorithms, monitor for DNSSEC validation failures, implement NSEC3 for zone enumeration protection.	Common Issues:	Weak cipher suites, mixed content warnings, and vulnerabilities related to SSL/TLS protocols (e.g., Heartbleed, POODLE).		
		Best Practices:	Always use HTTPS, enforce HTTP Strict Transport Security (HSTS) to prevent protocol downgrade attacks, regularly		

Wireless Security Protocols

WPA3

WPA2 WEP Purpose: Latest wireless security Purpose: Wireless security protocol to Purpose: Legacy wireless security protocol to replace WPA2. secure Wi-Fi networks. protocol. Obsolete and insecure. Function: Offers improved encryption and Function: Uses Advanced Encryption authentication compared to Standard (AES) with Counter Function: Uses RC4 encryption with a WPA2. Mode Cipher Block Chaining 40-bit or 104-bit key. Message Authentication Code Configuration: Configure on wireless routers Configuration: Avoid using WEP. If Protocol (CCMP). and devices. Requires unavoidable, change the WEP compatible hardware. Configuration: Configured on wireless routers key frequently. and devices. Choose WPA2-Simultaneous Authentication of **Key Features:** Simple to configure, but easily **Key Features:** Personal (PSK) or WPA2-Equals (SAE) - protects against cracked. Enterprise (802.1X). dictionary attacks, enhanced Common Easily cracked using readily CCMP encryption, stronger encryption. **Key Features:** Issues: available tools. than WEP and WPA. Common Compatibility issues with older **Best Practices:** Do not use WEP. Upgrade to Issues: devices, configuration errors. Common PSK cracking, vulnerabilities like WPA2 or WPA3 immediately. Issues: KRACK attack. **Best Practices:** Use WPA3 where possible, update firmware regularly, use Best Use strong passwords, update strong passwords. Practices: firmware regularly, consider WPA3 if available.

update SSL/TLS certificates.