
Microsoft SQL Server Cheatsheet
A comprehensive cheat sheet for Microsoft SQL Server, covering essential commands, syntax, and functions for database management and

querying.

Basic SQL Commands

Querying Data

Data Definition Language (DDL)

CREATE

DATABASE

Creates a new database.

CREATE DATABASE MyDatabase;

ALTER DATABASE Modifies an existing database.

ALTER DATABASE MyDatabase MODIFY NAME =

MyNewDatabase;

DROP DATABASE Deletes a database.

DROP DATABASE MyDatabase;

CREATE TABLE Creates a new table.

CREATE TABLE Employees (

 ID INT PRIMARY KEY,

 Name VARCHAR(255)

);

ALTER TABLE Modifies an existing table.

ALTER TABLE Employees ADD Salary DECIMAL(10,

2);

DROP TABLE Deletes a table.

DROP TABLE Employees;

Data Manipulation Language (DML)

SELECT Retrieves data from a database.

SELECT * FROM Employees;

INSERT Inserts new data into a table.

INSERT INTO Employees (ID, Name) VALUES (1, 'John

Doe');

UPDATE Updates existing data in a table.

UPDATE Employees SET Salary = 50000 WHERE ID = 1;

DELETE Deletes data from a table.

DELETE FROM Employees WHERE ID = 1;

MERGE Performs insert, update, or delete operations based on conditions.

MERGE INTO TargetTable AS Target

USING SourceTable AS Source

ON Target.ID = Source.ID

WHEN MATCHED THEN

 UPDATE SET Target.Name = Source.Name

WHEN NOT MATCHED THEN

 INSERT (ID, Name) VALUES (Source.ID, Source.Name);

Filtering and Sorting

WHERE Filters rows based on a condition.

SELECT * FROM Employees WHERE Salary > 60000;

AND / OR Combines multiple conditions.

SELECT * FROM Employees WHERE Salary > 50000 AND

Department = 'IT';

ORDER

BY

Sorts the result set.

SELECT * FROM Employees ORDER BY Name ASC;

TOP Returns the top N rows.

SELECT TOP 10 * FROM Employees ORDER BY Salary DESC;

BETWEEN Filters rows within a range.

SELECT * FROM Employees WHERE Salary BETWEEN 50000

AND 70000;

IN Filters rows based on a set of values.

SELECT * FROM Employees WHERE Department IN ('IT',

'HR');

Joins

INNER JOIN Returns rows with matching values in both tables.

SELECT * FROM Employees INNER JOIN Departments ON

Employees.DepartmentID = Departments.ID;

LEFT JOIN Returns all rows from the left table and matching rows from

the right table.

SELECT * FROM Employees LEFT JOIN Departments ON

Employees.DepartmentID = Departments.ID;

RIGHT JOIN Returns all rows from the right table and matching rows from

the left table.

SELECT * FROM Employees RIGHT JOIN Departments ON

Employees.DepartmentID = Departments.ID;

FULL OUTER

JOIN

Returns all rows when there is a match in either the left or

right table.

SELECT * FROM Employees FULL OUTER JOIN

Departments ON Employees.DepartmentID =

Departments.ID;

CROSS

JOIN

Returns the Cartesian product of the tables.

SELECT * FROM Employees CROSS JOIN Departments;

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
https://cheatsheetshero.com/

Advanced SQL Features

Transactions and Stored Procedures

Aggregate Functions

COUNT Counts the number of rows.

SELECT COUNT(*) FROM Employees;

SUM Calculates the sum of values.

SELECT SUM(Salary) FROM

Employees;

AVG Calculates the average of values.

SELECT AVG(Salary) FROM

Employees;

MIN Finds the minimum value.

SELECT MIN(Salary) FROM

Employees;

MAX Finds the maximum value.

SELECT MAX(Salary) FROM

Employees;

Grouping and Having

GROUP

BY

Groups rows with the same values.

SELECT Department, COUNT(*)

FROM Employees GROUP BY

Department;

HAVING Filters groups based on a condition.

SELECT Department, COUNT(*)

FROM Employees GROUP BY

Department HAVING COUNT(*) >

10;

ROLLUP Generates multiple grouping sets,

including subtotals and grand totals.

SELECT Department,

YEAR(HireDate), COUNT(*)

FROM Employees

GROUP BY ROLLUP (Department,

YEAR(HireDate));

CUBE Generates all possible grouping sets

for the specified columns.

SELECT Department,

YEAR(HireDate), COUNT(*)

FROM Employees

GROUP BY CUBE (Department,

YEAR(HireDate));

Subqueries

Subquery in

WHERE

clause

Using a subquery to filter results.

SELECT * FROM Employees

WHERE DepartmentID IN

(SELECT ID FROM

Departments WHERE Location

= 'New York');

Subquery in

SELECT

clause

Using a subquery to return a

value.

SELECT Name, (SELECT

MAX(Salary) FROM

Employees) AS MaxSalary

FROM Employees;

Correlated

Subquery

A subquery that references a

column from the outer query.

SELECT Name FROM Employees

e1 WHERE Salary > (SELECT

AVG(Salary) FROM Employees

e2 WHERE e1.DepartmentID =

e2.DepartmentID);

Transactions

BEGIN TRANSACTION Starts a new transaction.

BEGIN TRANSACTION;

COMMIT TRANSACTION Saves all changes made during the transaction.

COMMIT TRANSACTION;

ROLLBACK

TRANSACTION

Reverts all changes made during the

transaction.

ROLLBACK TRANSACTION;

SAVE TRANSACTION Sets a savepoint within a transaction.

SAVE TRANSACTION SavePoint1;

Stored Procedures

CREATE

PROCEDURE

Creates a new stored procedure.

CREATE PROCEDURE GetEmployeesByDepartment

(@Department VARCHAR(255))

AS

BEGIN

 SELECT * FROM Employees WHERE Department

= @Department;

END;

EXECUTE

PROCEDURE

Executes a stored procedure.

EXEC GetEmployeesByDepartment 'IT';

ALTER

PROCEDURE

Modifies an existing stored procedure.

ALTER PROCEDURE GetEmployeesByDepartment

(@Department VARCHAR(255))

AS

BEGIN

 SELECT ID, Name FROM Employees WHERE

Department = @Department;

END;

DROP

PROCEDURE

Deletes a stored procedure.

DROP PROCEDURE GetEmployeesByDepartment;

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

