
Coding Interview Tips Cheatsheet
A concise guide offering effective strategies and techniques for acing coding interviews, covering preparation, problem-solving, communication,

and follow-up.

Preparation Strategies

During the Interview

Communication Skills

Fundamentals Review

Data Structures: Master arrays, linked lists, trees,

graphs, hash tables, stacks, and queues.

Understand their properties, time complexities,

and use cases.

Algorithms: Grasp sorting (e.g., quicksort,

mergesort), searching (e.g., binary search), and

graph algorithms (e.g., Dijkstra’s, BFS, DFS).

Understand their trade-offs.

Time Complexity (Big O): Learn to analyze the

efficiency of algorithms. Focus on O(1), O(log n),

O(n), O(n log n), O(n n). Practice

determining complexity for common operations.

2), and O(2

Space Complexity: Understand how much

memory your algorithms use. Be mindful of

auxiliary space used in addition to input data.

Practice Platforms

LeetCode Extensive problem set, active

community, and interview

simulations.

HackerRank Diverse challenges, tracks

progress, and provides

company-specific preparation

kits.

GeeksforGeeks Comprehensive articles,

explanations, and coding

problems.

Interview Cake Focuses on understanding

underlying principles, not just

memorizing solutions.

Mock Interviews

Schedule mock interviews with peers or online

services (e.g., Pramp, interviewing.io). Simulate

real interview pressure to identify areas for

improvement.

Ask for detailed feedback on your problem-

solving approach, coding style, and

communication skills.

Record yourself to analyze your body language

and verbal communication.

Understanding the Problem

Clarify Requirements: Ask clarifying questions to

fully understand the problem scope, constraints,

and edge cases. Don’t assume anything!

Example Inputs/Outputs: Work through a few

examples to solidify your understanding and

identify potential complexities.

Test Cases: Think about different types of test

cases: basic, edge, large-scale, and negative. This

demonstrates thoroughness.

Problem Solving Approach

Think Out Loud: Explain your thought process as

you explore potential solutions. The interviewer

wants to see how you think.

Break it Down: Decompose the problem into

smaller, manageable subproblems. This makes the

overall task less daunting.

Consider Trade-offs: Analyze the time and space

complexity of different approaches and discuss

the trade-offs with the interviewer.

Optimal Solution: Aim for the most efficient

solution, but don’t get stuck optimizing

prematurely. A working solution is better than no

solution.

Coding

Write Clean Code: Use meaningful variable

names, proper indentation, and comments to

improve readability.

Modularize: Break your code into functions to

improve organization and reusability.

Handle Edge Cases: Explicitly address potential

edge cases in your code to prevent errors.

Don’t Panic: If you get stuck, take a deep breath

and revisit your approach. Ask the interviewer for

a hint if necessary.

Verbal Communication

Be Clear and Concise: Articulate your thoughts

clearly and avoid rambling. Use precise language

to explain your ideas.

Active Listening: Pay attention to the

interviewer’s questions and instructions. Ask

follow-up questions to ensure understanding.

Explain Trade-offs: Clearly articulate the

reasoning behind your design choices,

highlighting the benefits and drawbacks of each

option.

Non-Verbal Communication

Maintain Eye Contact: Show engagement and

confidence by making eye contact with the

interviewer.

Body Language: Sit upright, avoid fidgeting, and

use hand gestures to emphasize your points.

Enthusiasm: Express genuine interest in the

problem and the company. Show that you are

excited about the opportunity.

Asking Questions

Prepare Questions: Have a few thoughtful

questions prepared about the company, the

team, or the role. This demonstrates your interest

and initiative.

Focus on Culture and Growth: Ask questions that

reveal insights into the company culture,

opportunities for professional development, and

the team’s goals.

Avoid Generic Questions: Steer clear of

questions easily answered by a quick search on

the company website. Show you’ve done your

research.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
https://leetcode.com/
https://www.hackerrank.com/
https://www.geeksforgeeks.org/
https://www.interviewcake.com/
https://cheatsheetshero.com/


Post-Interview

Follow-Up

Thank-You Note: Send a personalized thank-you

note within 24 hours, reiterating your interest and

highlighting key takeaways from the interview.

Be Specific: Reference specific topics discussed

during the interview to demonstrate your

engagement and attentiveness.

Review and Reflection

Analyze Performance: Review your performance

in the interview. What went well? What could you

have done better? Identify areas for

improvement.

Seek Feedback: Reach out to mock interviewers

or mentors for additional feedback on your

performance.

Document Learning: Keep a log of the questions

you encountered, the solutions you developed,

and the lessons you learned. This will help you

prepare for future interviews.

Handling Rejection

Don’t Take it Personally: Rejection is a common

part of the job search process. Don’t let it

discourage you.

Request Feedback: If possible, ask for specific

feedback on why you weren’t selected. This can

provide valuable insights for future improvement.

Stay Positive: Maintain a positive attitude and

continue to refine your skills and strategies.

Persistence is key.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

