

Potentiometer Cheat Sheet

A concise guide to potentiometers, covering types, applications, specifications, and practical usage. This cheat sheet provides essential information for electronics enthusiasts and engineers working with these variable resistors.

A track of resistive material

the wiper.

Potentiometer Basics

A potentiometer (or pot) is a three-terminal

Definition Key Components Operation

Resistive

resistor with a sliding or rotating contact that forms an adjustable voltage divider.	Element:	(carbon composition, cermet, wirewound) determining the total
It acts as a variable resistor, allowing you to		resistance.
adjust the resistance value by turning a knob or slider.	Wiper (Sliding Contact):	A movable contact that slides along the resistive element, tapping off a fraction of the total resistance.
-		
https://upload.wikimedia.org/wikipedia/commons/th Potentiometer_symbols.svg.png	lerminals: numb/f/fc/Poter	I hree terminals: two, connected nitiometer_symbols.svg/1280px- to the ends of the resistive element, and one connected to

By adjusting the position of the wiper, the resistance between the wiper and one end terminal changes. This allows a fraction of the applied voltage to be tapped off.

When used as a potentiometer, all three terminals are connected. When used as a variable resistor (rheostat), only two terminals are used (one end and the wiper).

Types of Potentiometers

Schematic symbol for potentiometer

Based on Resistive Material

Carbon Film:	Low cost, general purpose, higher noise. Typically used in audio controls and low-precision applications.
Cermet:	Good stability, higher precision, lower noise than carbon film. Used in precision circuits and trimmers.
Wirewound:	High power rating, high precision, but limited resolution. Used in high-power applications and precision control.
Conductive Plastic:	Low noise, long life, moderate precision. Used in high-end audio equipment and precision controls.

Based on Mechanical Configuration

Rotary Potentiometers:	Adjusted by rotating a shaft. Common in volume controls, user interfaces.
Slider Potentiometers:	Adjusted by sliding a knob linearly. Used in audio mixers and graphic equalizers.
Trimmer Potentiometers (Trimpots):	Small potentiometers designed for infrequent adjustments, often used for calibration purposes on PCBs.
Multi-turn Potentiometers:	Require multiple rotations of the shaft to cover the full resistance range, allowing for finer adjustments. Used in precision instrumentation.

Key Specifications

Electrical Characteristics

Total Resistance:	The overall resistance between the two end terminals, typically ranging from a few ohms to several megaohms.
Tolerance:	The allowable variation in the total resistance, expressed as a percentage (e.g., ±10%).
Power Rating:	The maximum power the potentiometer can dissipate without damage, typically expressed in watts.
Taper (Linear/Logarithmic):	Describes the relationship between the wiper position and the resistance. Linear taper means resistance changes linearly with position; logarithmic taper (audio taper) means resistance changes logarithmically.
Resolution:	The smallest possible change in resistance that can be achieved. Wirewound pots have lower resolution than film pots.

Environmental Considerations

Temperature Coefficient:	Describes how much the resistance changes with temperature. Important for high-precision applications.
Operating Temperature Range:	The range of temperatures within which the potentiometer will function correctly.
Humidity Sensitivity:	How much the resistance changes with humidity.

Applications

Common Uses

Volume controls in audio equipment.
Brightness/contrast adjustments in displays.
Calibration trimmers in circuits.
Position feedback sensors in robotics.
Adjustable voltage dividers.

Page 1 of 2 <u>https://cheatsheetshero.com</u>

Circuit Examples

Practical Considerations

Voltage	A potentiometer connected to a
Divider:	voltage source provides an
	adjustable output voltage. Vout =
	Vin * (R2 / (R1 + R2)) where R2
	is the resistance between the wiper

and ground.

Rheostat:

A potentiometer used as a twoterminal variable resistor can control current in a circuit (e.g., dimming an LED). Always select a potentiometer with a suitable power rating for the application to prevent overheating.

Consider the required precision and stability when choosing between different potentiometer types (e.g., carbon film vs. cermet).

Use a linear taper for general-purpose adjustments and a logarithmic taper (audio taper) for volume controls.

Page 2 of 2 https://cheatsheetshero.com