
Cucumber Cheat Sheet
A comprehensive guide to Cucumber, covering Gherkin syntax, step definitions, configuration, and best practices for writing effective and

maintainable automated tests.

Gherkin Syntax Essentials

Step Definitions

Configuration and Hooks

Feature and Scenario Structure

Feature: Describes a high-level feature of the

application.

Scenario: A specific example of how the

feature should behave.

Scenario Outline: A template for multiple

scenarios with different data.

Examples: Table of data used with Scenario

Outline.

Example:

Feature: User Authentication

 Scenario: Successful login

 Given User is on the login page

 When User enters valid credentials

 Then User should be logged in

Keywords

Give

n

Sets up the initial context of the

scenario.

When Describes an event or action

performed by the user.

Then Specifies the expected outcome or

result.

And ,

But

Used to chain multiple Given , When ,

or Then steps for readability.

Backg

round

A set of steps that run before each

scenario in a feature.

Data Tables and Doc Strings

Data Tables: Used to pass structured data to

a step definition.

Doc Strings: Used to pass larger blocks of

text to a step definition.

Data Table Example:

Given the following users exist:

 | username | password |

 | john | secret |

 | jane | password |

Doc String Example:

Given the following message:

 """

 This is a long message

 that spans multiple lines.

 """

Basic Step Definition Structure

Step definitions link Gherkin steps to code that

executes those steps.

Given('User is on the login page') do

 # Code to navigate to the login page

end

Step definitions typically use regular expressions

to match the Gherkin step text.

Regular Expression Usage

.* Matches any character (except

newline) zero or more times.

(\d+

)

Matches one or more digits and

captures the value.

([^"]

*)

Matches any character except a double

quote, zero or more times, and captures

the value.

^(.*)$ Matches the entire line and captures it.

Step Definition with Arguments

Given('User enters {string} as

username') do |username|

 # Code to enter the username

 fill_in('username', with: username)

end

Given('the product name is {word}') do

|product_name|

 # ...

end

Cucumber Configuration

Cucumber is typically configured using a

cucumber.yml file or command-line options.

Key configuration options include:

paths : Specifies the location of feature

files.

requires : Specifies files to load before

running tests (e.g., step definitions, support

files).

profiles : Defines different configurations

for different environments (e.g., test,

development).

Example cucumber.yml :

default: --format pretty

test: --format progress --tags @test

Hooks

Befo

re

Runs before each scenario or a tagged

scenario.

Afte

r

Runs after each scenario or a tagged

scenario.

Arou

nd

Wraps around each scenario, allowing

you to perform actions before and after

the scenario.

Afte

rSte

p

Runs after each step.

Hook Examples

Before('@database') do

 # Code to set up the database

end

After do |scenario|

 # Code to take a screenshot if the

scenario fails

 if scenario.failed?

 save_screenshot('screenshot.png')

 end

end

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
https://cheatsheetshero.com/

Advanced Cucumber Techniques

Tagged Hooks and Scenarios

Tags are used to organize and filter scenarios and

hooks.

Scenarios can be tagged directly in the feature

file:

Hooks can be tagged to run only for specific

scenarios:

@smoke

Scenario: Successful login

 ...

Before('@smoke') do

 # Code to run before smoke tests

end

Parallel Execution

Cucumber can be configured to run scenarios in

parallel, significantly reducing test execution

time.

This often involves using a gem like cucumber-

parallel or parallel_tests .

Configuration typically involves specifying the

number of parallel processes to use.

Best Practices

Write clear and concise Gherkin features:

Features should be easy to understand by

both technical and non-technical

stakeholders.

Keep step definitions focused: Step

definitions should perform a single, well-

defined action.

Avoid duplication: Use hooks and helper

methods to avoid repeating code in step

definitions.

Use data tables and doc strings effectively:

These features can help make your scenarios

more readable and maintainable.

Run tests frequently: Integrate Cucumber

tests into your CI/CD pipeline to catch issues

early.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

