
Design Patterns Cheat Sheet
A quick reference guide to common software design patterns, categorized by their intent: creational, structural, and behavioral. Includes pattern

descriptions, use cases, and implementation notes to help you apply them effectively in your projects.

Creational Patterns

Structural Patterns

Singleton

Intent: Ensure a class only has one

instance and provide a global

point of access to it.

Use Case: Managing resources like

database connections or

configuration settings.

Implementation

Notes:

Private constructor, static

method to access the

instance. Thread safety is a

key consideration.

Example

(Python):
class Singleton:

 _instance = None

 def __new__(cls,

*args, **kwargs):

 if not

cls._instance:

cls._instance =

super().__new__(cls,

*args, **kwargs)

 return

cls._instance

Factory Method

Intent: Define an interface for

creating an object, but let

subclasses decide which

class to instantiate. Promotes

loose coupling.

Use Case: Creating objects of different

types based on runtime

configuration or user input.

Implementation

Notes:

Abstract creator class with a

factory method, concrete

creators that override the

method to return specific

product types.

Example (Java):
interface Product {}

class ConcreteProductA

implements Product {}

interface Creator {

 Product

factoryMethod();

}

class ConcreteCreatorA

implements Creator {

 public Product

factoryMethod() {

 return new

ConcreteProductA();

 }

}

Abstract Factory

Intent: Provide an interface for

creating families of related or

dependent objects without

specifying their concrete

classes.

Use Case: Supporting multiple look-

and-feels in a GUI or working

with different database

systems.

Implementation

Notes:

Abstract factory interface,

concrete factories for each

family, abstract products, and

concrete products.

Example

Scenario:

Imagine creating a GUI

factory that can produce

Windows or MacOS specific

UI elements (buttons, text

fields, etc.).

Adapter

Intent: Allow incompatible interfaces

to work together. Acts as a

wrapper converting the

interface of a class into

another interface clients

expect.

Use Case: Integrating legacy systems

with new systems or using

third-party libraries with

different interfaces.

Implementation

Notes:

Adapter class implements the

target interface and holds an

instance of the adaptee.

Methods in the adapter call

corresponding methods in the

adaptee.

Example: Adapting a Fahrenheit

temperature sensor to a

system that expects Celsius.

Decorator

Intent: Dynamically add

responsibilities to an object

without modifying its

structure. Provides a flexible

alternative to subclassing for

extending functionality.

Use Case: Adding logging, caching, or

security features to an object

at runtime.

Implementation

Notes:

Decorator class implements

the same interface as the

component it decorates and

holds an instance of the

component. It adds extra

behavior before or after

calling the component’s

methods.

Example: Adding borders or scrollbars

to a GUI component.

Facade

Intent: Provide a simplified interface

to a complex subsystem.

Hides the complexities of the

subsystem from the client.

Use Case: Simplifying the use of a

complex library or framework.

Implementation

Notes:

Facade class provides simple

methods that delegate to the

underlying subsystem

components.

Example: A Compiler facade that

simplifies the process of

compiling code by hiding the

individual steps of lexical

analysis, parsing, and code

generation.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
https://cheatsheetshero.com/

Behavioral Patterns

Advanced Concepts

Observer

Intent: Define a one-to-many

dependency between objects

so that when one object

changes state, all its

dependents are notified and

updated automatically.

Use Case: Implementing event handling

systems or model-view-

controller (MVC)

architectures.

Implementation

Notes:

Subject (observable)

maintains a list of observers.

When the subject’s state

changes, it notifies all

registered observers.

Example: A stock ticker application

where multiple displays

(observers) update when the

stock price (subject) changes.

Strategy

Intent: Define a family of algorithms,

encapsulate each one, and

make them interchangeable.

Strategy lets the algorithm

vary independently from

clients that use it.

Use Case: Implementing different

sorting algorithms or payment

processing methods.

Implementation

Notes:

Strategy interface defines the

algorithm. Concrete strategy

classes implement specific

algorithms. Context holds a

reference to a strategy

object.

Example: Allowing a user to choose

between different

compression algorithms (e.g.,

ZIP, GZIP) when saving a file.

Template Method

Intent: Define the skeleton of an

algorithm in an operation,

deferring some steps to

subclasses. Template Method

lets subclasses redefine

certain steps of an algorithm

without changing the

algorithm’s structure.

Use Case: Implementing a build process

where some steps are

common and others are

specific to different types of

projects.

Implementation

Notes:

Abstract class defines the

template method, which calls

abstract and concrete

methods. Concrete classes

implement the abstract

methods to provide specific

behavior.

Example: Implementing a report

generation process where the

steps of loading data,

formatting data, and

outputting data are defined,

but the specific formatting

and output methods are

different for different report

types.

Anti-Patterns

These are patterns that are commonly used but

are ineffective and often lead to negative

consequences.

Examples:

God Object: A class that knows too much or

does too much.

Spaghetti Code: Code that is difficult to

read and trace.

Copy-Paste Programming: Duplicating code

instead of using proper abstraction.

GRASP Principles

Information

Expert:

Assign responsibility to the

class that has the information

needed to fulfill it.

Creator: Assign responsibility of object

creation to the class that

contains or closely uses the

created objects, or that has

the initializing data.

Low Coupling: Design classes with minimal

dependencies on other

classes.

High Cohesion: Keep related responsibilities

grouped together in the same

class.

Polymorphism: Use polymorphism to handle

variation based on type.

Protected

Variations:

Protect elements from the

variations by wrapping them

with an interface.

Pure

Fabrication:

Assign a high cohesion set of

responsibilities to an artificial

class that does not represent a

problem domain concept.

Controller: Assign the responsibility of

receiving or handling a system

event to a class that is not a UI

class.

SOLID Principles

Single

Responsibility

Principle (SRP):

A class should have only one

reason to change.

Open/Closed

Principle (OCP):

Software entities should be

open for extension, but

closed for modification.

Liskov

Substitution

Principle (LSP):

Subtypes must be

substitutable for their base

types.

Interface

Segregation

Principle (ISP):

Clients should not be forced

to depend upon interfaces

that they do not use.

Dependency

Inversion

Principle (DIP):

Depend upon abstractions,

not concretions. High-level

modules should not depend

on low-level modules.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

