
UML Cheat Sheet
A concise cheat sheet covering the essential aspects of Unified Modeling Language (UML), including diagrams, relationships, and notation.

UML Diagrams Overview

Class Diagram Elements

Use Case Diagram Elements

Structural Diagrams

Class Diagram: Represents the static structure of a system, showing classes,

attributes, operations, and relationships.

Object Diagram: Shows instances of classes and their relationships at a

specific point in time.

Component Diagram: Illustrates the organization and relationships of

software components.

Deployment Diagram: Depicts the physical deployment of software

components to hardware nodes.

Package Diagram: Organizes model elements into packages to manage

complexity.

Profile Diagram: Allows defining custom stereotypes, tagged values, and

constraints to extend UML for specific domains.

Behavioral Diagrams

Use Case Diagram: Captures the functional requirements of a system from

the user’s perspective.

Activity Diagram: Models the flow of activities within a system or business

process.

State Machine Diagram: Describes the states an object can be in and the

transitions between those states in response to events.

Sequence Diagram: Illustrates interactions between objects in a time-

ordered sequence.

Communication Diagram: Similar to sequence diagrams, but focuses on

object relationships rather than time sequence. Also known as collaboration

diagram.

Interaction Overview Diagram: Provides a high-level view of the interactions

within a system, combining aspects of activity and sequence diagrams.

Timing Diagram: Shows the change in state or value of one or more objects

over time.

Classes

Notation: Represented as a rectangle divided into three sections: class

name, attributes, and operations.

Attributes: Characteristics or properties of a class. Indicated by name,

type, and visibility (e.g., +name: String ).

Operations: Actions or functions that a class can perform. Indicated by

name, parameters, and return type (e.g., +getName(): 

String ).

Visibility: +  Public, -  Private, #  Protected, ~  Package.

Relationships

Association: A general relationship between classes, indicated by a

solid line. Can be unidirectional or bidirectional.

Aggregation: A ‘has-a’ relationship representing a whole-part

hierarchy, where the part can exist independently of the

whole. Represented by a line with an open diamond at

the whole end.

Composition: A strong ‘has-a’ relationship where the part cannot exist

independently of the whole. Represented by a line with

a filled diamond at the whole end.

Generalization

(Inheritance):

An ‘is-a’ relationship where one class inherits from

another. Represented by a line with an open triangle at

the parent class end.

Realization: A relationship between an interface and a class that

implements it. Represented by a dashed line with an

open triangle at the interface end.

Dependency: A weaker form of relationship indicating that one class

uses or depends on another. Represented by a dashed

line.

Actors

Represented as stick figures. Actors interact with

the system but are external to it. Can be human

users, external systems, or hardware devices.

Use Cases

Represented as ovals. Use cases are high-level

descriptions of what a system should do from the

actor’s perspective.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
https://cheatsheetshero.com/


Activity & Sequence Diagrams

Relationships

Association: Represents interaction

between an actor and a use

case. A solid line connects the

actor to the use case.

Include: Indicates that one use case

includes the functionality of

another. Represented by a

dashed line with an arrow

pointing to the included use

case and labeled

<<include>> .

Extend: Indicates that one use case

extends the functionality of

another. Represented by a

dashed line with an arrow

pointing to the extended use

case and labeled <<extend>> .

Generalization: An ‘is-a’ relationship between

use cases, indicating that one

use case inherits the behavior

of another. Represented by a

solid line with an open triangle

pointing to the parent use case.

System Boundary

A rectangle that encloses the use cases,

representing the boundary of the system.

Activity Diagram Elements

Initial Node: Represents the starting point of the activity. Shown as a

filled circle.

Activity: Represents a task or action performed. Shown as a rounded

rectangle.

Decision

Node:

Represents a branching point in the activity flow. Shown as a

diamond.

Merge Node: Represents a point where multiple flows converge into one.

Shown as a diamond.

Fork Node: Splits a single flow of control into multiple concurrent flows.

Shown as a bar.

Join Node: Synchronizes multiple concurrent flows into a single flow.

Shown as a bar.

Final Node: Represents the end of the activity. Shown as a bullseye.

Sequence Diagram Elements

Lifeline: Represents the existence of an object over time.

Shown as a vertical dashed line.

Activation Box: Indicates when an object is performing an action.

Shown as a thin rectangle on the lifeline.

Message: Represents communication between objects. Shown

as an arrow from one lifeline to another.

Synchronous

Message:

The sender waits for a response. Shown as a solid

arrow.

Asynchronous

Message:

The sender does not wait for a response. Shown as an

open arrow.

Return Message: Represents the response to a synchronous message.

Shown as a dashed arrow.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

