CHEAT Backbone.js Cheat Sheet
SH EETS A concise reference for Backbone.js, covering models, views, collections, routers, and events, along with best practices for building structured
JavaScript applications.

Backbone.js Fundamentals

Core Concepts Setting up Backbone Backbone Object
Models: Represent data and business logic. Include ot The Backbone object is the entry point to the
. . . <scri
Views: Handle the user interface and Backbone.js v library and contains all the core functionalities.
f : ="underscore.js">
presentation. library sre=tun)))
Collections: Ordered sets of models </script> It provides methods for creating models, views,
:) collections, and routers.
Routers: Manage application state and <script
navigation. src="jquery.js">
Events: Enable communication between </script>
components. .
<script

Backbone js is a lightweight framework that
provides structure to JavaScript applications by

src="backbone.js">

; : : s </script>
introducing models with key-value binding and
custom events, co.llectlo.ns Wlth. arich API ?f Dependencies Backbone.js depends on
enumerated functions, views with declarative) .
) . Underscore.js and jQuery (or
event handling, and connects it all to your Zeptojs)
existing APl over a RESTful JSON interface. -
Models & Collections
Model Definition Model Attributes Collection Operations
Get Attribute) Add Model)
var Book = Backbone.Model.extend({ book.get('title'); // library.add(book);
defaults: { Returns the title
title: 'Default Title', Remove Model library.remove(book)
L ! Set Attribute
author: 'Unknown', book.set({ title: 'New :
year: 2023 Title' });
1}, Fetch Models from
) library.fetch();
initialize: function() { Check if Server

book.has('title'); //

! Attribute Exists)
console.log('A new book has been Filter Models
Returns true/false library.where({

created.');
3 year: 2023 });
M Collection Definition
Define a Model by extending Backbone.Model . var Library =

defaults : Specify default attribute values. Backbone.Collection.extend({

model: Book

initialize : Constructor logic for the model. M

Define a Collection by extending
Backbone.Collection

model : Specify the type of model the collection
contains.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
https://cheatsheetshero.com/

Views & Events

View Definition

Event Handling

Rendering Views

var BookView = Backbone.View.extend({
el: '#book-container',
initialize: function() {
this.render();
H
render: function() {
this.$el.html('Book Title: ' +
this.model.get('title'));
return this;

}

View Events
events: {

'click .button':
'handleClick'
iy
handleClick: function() {
console.log('Button
clicked!");

}

Model Events
this.listenTo(this.model,

Views are rendered by populating the DOM with
data from the model.

Use templates (e.g., Underscore templates,
Handlebars) to generate HTML.

render: function() {
var template = _.template($('#book-
template').html());

this.$el.html(template(this.model.toJSON
)

1) 'change', this.render); return this;
Define a View by extending Backbone.View . Collection 3
Events this.listenTo(this.collect
el : Specify the DOM element the view is ion, 'add', this.render);
associated with.
initialize : Constructor logic for the view.
render : Method to render the view's content.
Routers & Best Practices
Router Definition Navigation Best Practices
Navigate to = Use a build tool: Webpack, Parcel, or
var AppRouter = Backbone.Router.extend({ router.navigate('books/1", .
Route Browserify to manage dependencies and

routes: {
' 'home',
'books/:id': 'bookDetails'
+
home: function() {
console.log('Home route');
+
bookDetails: function(id) {
console.log('Book details for ID: '
+ id);
}
iok

Define a Router by extending Backbone.Router .

routes : Map URL routes to handler functions.

Page 2 of 2

{ trigger: true });

Start Histor
y Backbone.history.start();

bundle your application.

» Keep views small and focused: Each view
should be responsible for a small part of the
Ul.

= Use events for communication: Models,
views, and collections can communicate
through events.

= Follow a consistent coding style: Use a linter
to enforce a consistent coding style.

= Use a modular architecture: Break your
application into smaller, reusable modules.

= Test your code: Write unit tests and
integration tests to ensure your code is
working correctly.

= Use a RESTful API: Design your API to follow
RESTful principles.

https://cheatsheetshero.com

https://cheatsheetshero.com/

