
Backbone.js Cheat Sheet
A concise reference for Backbone.js, covering models, views, collections, routers, and events, along with best practices for building structured

JavaScript applications.

Backbone.js Fundamentals

Models & Collections

Core Concepts

Models: Represent data and business logic.

Views: Handle the user interface and

presentation.

Collections: Ordered sets of models.

Routers: Manage application state and

navigation.

Events: Enable communication between

components.

Backbone.js is a lightweight framework that

provides structure to JavaScript applications by

introducing models with key-value binding and

custom events, collections with a rich API of

enumerated functions, views with declarative

event handling, and connects it all to your

existing API over a RESTful JSON interface.

Setting up Backbone

Include

Backbone.js

library

<script

src="underscore.js">

</script>

<script

src="jquery.js">

</script>

<script

src="backbone.js">

</script>

Dependencies Backbone.js depends on

Underscore.js and jQuery (or

Zepto.js).

Backbone Object

The Backbone object is the entry point to the

library and contains all the core functionalities.

It provides methods for creating models, views,

collections, and routers.

Model Definition

var Book = Backbone.Model.extend({

 defaults: {

 title: 'Default Title',

 author: 'Unknown',

 year: 2023

 },

 initialize: function() {

 console.log('A new book has been

created.');

 }

});

Define a Model by extending Backbone.Model .

defaults : Specify default attribute values.

initialize : Constructor logic for the model.

Model Attributes

Get Attribute
book.get('title'); //

Returns the title

Set Attribute
book.set({ title: 'New

Title' });

Check if

Attribute Exists
book.has('title'); //

Returns true/false

Collection Definition

var Library =

Backbone.Collection.extend({

 model: Book

});

Define a Collection by extending

Backbone.Collection .

model : Specify the type of model the collection

contains.

Collection Operations

Add Model
library.add(book);

Remove Model
library.remove(book)

;

Fetch Models from

Server
library.fetch();

Filter Models
library.where({

year: 2023 });

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
https://cheatsheetshero.com/

Views & Events

Routers & Best Practices

View Definition

var BookView = Backbone.View.extend({

 el: '#book-container',

 initialize: function() {

 this.render();

 },

 render: function() {

 this.$el.html('Book Title: ' +

this.model.get('title'));

 return this;

 }

});

Define a View by extending Backbone.View .

el : Specify the DOM element the view is

associated with.

initialize : Constructor logic for the view.

render : Method to render the view’s content.

Event Handling

View Events
events: {

 'click .button':

'handleClick'

},

handleClick: function() {

 console.log('Button

clicked!');

}

Model Events
this.listenTo(this.model,

'change', this.render);

Collection

Events
this.listenTo(this.collect

ion, 'add', this.render);

Rendering Views

Views are rendered by populating the DOM with

data from the model.

Use templates (e.g., Underscore templates,

Handlebars) to generate HTML.

render: function() {

 var template = _.template($('#book-

template').html());

this.$el.html(template(this.model.toJSON

()));

 return this;

}

Router Definition

var AppRouter = Backbone.Router.extend({

 routes: {

 '': 'home',

 'books/:id': 'bookDetails'

 },

 home: function() {

 console.log('Home route');

 },

 bookDetails: function(id) {

 console.log('Book details for ID: '

+ id);

 }

});

Define a Router by extending Backbone.Router .

routes : Map URL routes to handler functions.

Navigation

Navigate to

Route
router.navigate('books/1',

{ trigger: true });

Start History
Backbone.history.start();

Best Practices

Use a build tool: Webpack, Parcel, or

Browserify to manage dependencies and

bundle your application.

Keep views small and focused: Each view

should be responsible for a small part of the

UI.

Use events for communication: Models,

views, and collections can communicate

through events.

Follow a consistent coding style: Use a linter

to enforce a consistent coding style.

Use a modular architecture: Break your

application into smaller, reusable modules.

Test your code: Write unit tests and

integration tests to ensure your code is

working correctly.

Use a RESTful API: Design your API to follow

RESTful principles.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

