
Concurrency Cheat Sheet
A quick reference guide to concurrency concepts and tools, covering threads, processes, synchronization primitives, and common concurrency

patterns.

Fundamentals of Concurrency

Threads and Processes

Synchronization Primitives

Basic Definitions

Concurrency: The ability of a program to execute

multiple tasks seemingly simultaneously.

Parallelism: The actual simultaneous execution of

multiple tasks.

Process: An instance of a program being

executed, with its own memory space.

Thread: A lightweight unit of execution within a

process, sharing the same memory space.

Context Switching: The process of switching the

CPU’s focus between different threads or

processes.

Concurrency vs Parallelism

Concurrency Deals with managing multiple

tasks at the same time. It’s

about structure. Tasks may not

necessarily run simultaneously.

Parallelism Deals with actually executing

multiple tasks simultaneously.

Requires multiple cores or

processors. It’s about

execution.

Concurrency

enables

parallelism.

Parallelism enhances

concurrency.

Benefits of Concurrency

Improved Performance: Parallel execution

can reduce overall execution time.

Responsiveness: Keeps the application

responsive by offloading long-running tasks

to background threads.

Resource Utilization: Makes better use of

available CPU cores.

Thread Management

Creating

Threads

Use threading libraries (e.g.,

threading in Python,

java.lang.Thread in Java) to

create and start new threads.

Thread

Lifecycle

New -> Runnable -> Running ->

Blocked/Waiting -> Terminated.

Thread

Priorities

Some systems allow setting thread

priorities, but relying on them for

correctness is not recommended.

Joining

Threads

Waiting for a thread to complete its

execution using a join() method.

Process Management

Creating

Processes

Use process creation

mechanisms (e.g.,

multiprocessing in

Python, fork() in C) to

spawn new processes.

Inter-Process

Communication

(IPC)

Use techniques like pipes,

message queues, shared

memory, and sockets for

communication between

processes.

Process Isolation Processes have their own

memory space, providing

isolation and preventing

direct memory access from

other processes.

Threads vs. Processes

Threads: Lightweight, share memory space,

faster context switching, but susceptible to

race conditions.

Processes: Heavyweight, isolated memory

space, slower context switching, more

robust.

Choose threads for I/O-bound tasks and

processes for CPU-bound tasks to maximize

concurrency and parallelism.

Locks and Mutexes

Mutex

(Mutual

Exclusion)

A synchronization primitive that

provides exclusive access to a

shared resource. Only one thread

can hold the mutex at a time.

Prevents race conditions.

Lock

(Similar to

Mutex)

Often used interchangeably with

mutex, providing exclusive access.

Usage Acquire the lock before accessing

the shared resource, and release it

afterward.

Example

(Python)
import threading

lock = threading.Lock()

with lock:

 # Access shared

resource

Semaphores

Definition A synchronization primitive that

controls access to a shared

resource using a counter. Can allow

more than one thread to access the

resource concurrently (up to the

counter’s limit).

Usage Initialize the semaphore with a

counter value. Threads decrement

the counter when acquiring the

resource and increment it when

releasing.

Example

(Python)
import threading

semaphore =

threading.Semaphore(2) #

Allow 2 threads concurrently

with semaphore:

 # Access shared resource

Condition Variables

Definition A synchronization primitive that

allows threads to wait for a specific

condition to become true. Always

used in conjunction with a lock.

Usage Threads acquire the lock, check the

condition, and wait if the condition

is false. Another thread signals the

waiting thread(s) when the

condition becomes true.

Methods wait() , notify() ,

notify_all()

Example

(Python)
import threading

condition =

threading.Condition()

with condition:

 condition.wait() # Wait

for a signal

 condition.notify() #

Signal another thread

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
https://cheatsheetshero.com/

Common Concurrency Patterns

Producer-Consumer Pattern

Producers generate data and place it into a

shared buffer. Consumers retrieve data from the

buffer and process it. Synchronization is crucial

to prevent race conditions and buffer

overflows/underflows.

Use locks and condition variables to manage

access to the buffer and signal when data is

available or space is available.

Reader-Writer Lock

Description Allows multiple readers to

access a shared resource

concurrently, but only one

writer at a time. Improves

performance when reads are

much more frequent than

writes.

Implementation Can be implemented using a

combination of mutexes and

condition variables.

Prioritization Reader-preference or writer-

preference can be

implemented to control

fairness.

Thread Pool

A pool of worker threads that are created at the

start of the program and reused to execute

multiple tasks. Reduces the overhead of creating

and destroying threads for each task.

Use a queue to submit tasks to the thread pool.

Worker threads retrieve tasks from the queue and

execute them.

Asynchronous Programming

Definition A programming paradigm that

allows tasks to be executed

independently without blocking the

main thread. Improves

responsiveness and scalability.

Techniques Use asynchronous constructs like

futures, promises, async/await, and

callbacks.

Benefits Improved responsiveness,

scalability, and resource utilization.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

