CH EATHEBD Recursion and Backtracking Cheat Sheet
SHEETS

A concise guide to recursion and backtracking, fundamental algorithmic techniques, with examples and considerations for interview preparation.

Recursion Fundamentals

Basic Definition Example: Factorial Call Stack

Recursion is a programming technique where a Code: Explanation: Each recursive call adds a new frame to the call

function calls itself to solve smaller instances of . . stack. Deep recursion can lead to stack overflow
If n is O, the function returns

the same problem. def L errors if the base case is not reached or if the
1 (base case). Otherwise, it o
Essential components: factorial(n multiplies n by the factorial recursion is unbounded.
« Base Case: The condition that stops the): of n-1 ,recursively. Understanding the call stack is crucial for
recursion. if n == debugging recursive functions. Visualize the call
- Recursive Step: The function calls itself with 0: stack to trace the execution flow and identify
a modified input. return potential issues.
1 # Base
case
else:
return
no*
factorial(n
-1) #
Recursive
step
Backtracking Techniques
Basic Definition Algorithm Steps Example: N-Queens
Backtracking is a problem-solving technique that 1. Choose: Select an option from the available Problem Place N chess queens on an NxN
incrementally builds candidates to the solutions, choices. Statement: chessboard so that no two queens
and abandons a candidate (“backtracks”) as soon 2. Explore: Recursively explore the threaten each other.
asit gletermines that.the car?didate cannot consequences of that choice. Approach: Try placing queens one by one in
possibly lead to a valid solution. 3. Unchoose: If the choice doesn't lead to a each row. If a placement leads to
Core idea: Explore all possible solutions by trying solution, undo the choice and try another. a conflict, backtrack and try a
every option. If a solution doesn't work, revert to different column.
the previous state and try a different option. Key Ideas: . Use recursion to explore
possible placements.

« Use helper functions to check
if a placement is safe (no
conflicts).

= Backtrack by removing a
queen if it leads to a dead
end.

Recursion vs. Iteration
Comparison When to use Recursion? Tail Recursion
Recursion: Iteration: Use recursion when the problem has a natural Tail recursion is a special form of recursion where
recursive structure, such as tree traversal, graph the recursive call is the last operation in the
« Elegant and » Generally more L .
concise for officient in terms of algorltihms, or problems '.chz?t can be easily broken functlc.)n. ?omfe compllers can op.tlr‘mze tail
certain performance. down into smaller, self-similar subproblems. recursion into iterative code, avoiding st‘acl.< .
problems. . Can be more Consider iteration if performance is critical or if overflo.w. However, Python does not optimize tail
. Can be less complex to the recursion depth is likely to be large. recursion.
efficient due to implement for
function call recursive problems.
overhead. « Avoids the risk of
» Easier to read for stack overflow.

problems with a
recursive
structure.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
https://cheatsheetshero.com/

Interview Strategies

Identifying Recursion/Backtracking Problems Structuring Your Solution Optimization Techniques
Look for problems that involve searching, 1. Define the base case: What condition stops Memoization: Store the results of expensive
exploring combinations, or making choices at the recursion? function calls and reuse them
each step. Common keywords include 2. Define the recursive step: How does the when the same inputs occur
“combinations”, “permutations”, “subsets”, function call itself with a smaller again. Useful for overlapping
“paths”, and “search”. subproblem? subproblems (Dynamic

3. Handle edge cases: Consider empty inputs programming).

or invalid states. Pruning: Eliminate branches of the search
space that cannot lead to a valid
solution. Reduces the number of
recursive calls.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

