
Recursion and Backtracking Cheat Sheet
A concise guide to recursion and backtracking, fundamental algorithmic techniques, with examples and considerations for interview preparation.

Recursion Fundamentals

Backtracking Techniques

Recursion vs. Iteration

Basic Definition

Recursion is a programming technique where a

function calls itself to solve smaller instances of

the same problem.

Essential components:

Base Case: The condition that stops the

recursion.

Recursive Step: The function calls itself with

a modified input.

Example: Factorial

Code: Explanation:

def

factorial(n

):

 if n ==

0:

 return

1 # Base

case

 else:

 return

n *

factorial(n

-1) #

Recursive

step

If n is 0, the function returns

1 (base case). Otherwise, it

multiplies n by the factorial

of n-1 , recursively.

Call Stack

Each recursive call adds a new frame to the call

stack. Deep recursion can lead to stack overflow

errors if the base case is not reached or if the

recursion is unbounded.

Understanding the call stack is crucial for

debugging recursive functions. Visualize the call

stack to trace the execution flow and identify

potential issues.

Basic Definition

Backtracking is a problem-solving technique that

incrementally builds candidates to the solutions,

and abandons a candidate (“backtracks”) as soon

as it determines that the candidate cannot

possibly lead to a valid solution.

Core idea: Explore all possible solutions by trying

every option. If a solution doesn’t work, revert to

the previous state and try a different option.

Algorithm Steps

1. Choose: Select an option from the available

choices.

2. Explore: Recursively explore the

consequences of that choice.

3. Unchoose: If the choice doesn’t lead to a

solution, undo the choice and try another.

Example: N-Queens

Problem

Statement:

Place N chess queens on an N×N

chessboard so that no two queens

threaten each other.

Approach: Try placing queens one by one in

each row. If a placement leads to

a conflict, backtrack and try a

different column.

Key Ideas: Use recursion to explore

possible placements.

Use helper functions to check

if a placement is safe (no

conflicts).

Backtrack by removing a

queen if it leads to a dead

end.

Comparison

Recursion: Iteration:

Elegant and

concise for

certain

problems.

Can be less

efficient due to

function call

overhead.

Easier to read for

problems with a

recursive

structure.

Generally more

efficient in terms of

performance.

Can be more

complex to

implement for

recursive problems.

Avoids the risk of

stack overflow.

When to use Recursion?

Use recursion when the problem has a natural

recursive structure, such as tree traversal, graph

algorithms, or problems that can be easily broken

down into smaller, self-similar subproblems.

Consider iteration if performance is critical or if

the recursion depth is likely to be large.

Tail Recursion

Tail recursion is a special form of recursion where

the recursive call is the last operation in the

function. Some compilers can optimize tail

recursion into iterative code, avoiding stack

overflow. However, Python does not optimize tail

recursion.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
https://cheatsheetshero.com/

Interview Strategies

Identifying Recursion/Backtracking Problems

Look for problems that involve searching,

exploring combinations, or making choices at

each step. Common keywords include

“combinations”, “permutations”, “subsets”,

“paths”, and “search”.

Structuring Your Solution

1. Define the base case: What condition stops

the recursion?

2. Define the recursive step: How does the

function call itself with a smaller

subproblem?

3. Handle edge cases: Consider empty inputs

or invalid states.

Optimization Techniques

Memoization: Store the results of expensive

function calls and reuse them

when the same inputs occur

again. Useful for overlapping

subproblems (Dynamic

programming).

Pruning: Eliminate branches of the search

space that cannot lead to a valid

solution. Reduces the number of

recursive calls.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

