
Travis CI Cheat Sheet
A comprehensive cheat sheet covering essential Travis CI configurations, commands, and best practices for continuous integration and deployment.

Core Concepts & Configuration

Advanced Configuration

Basic `.travis.yml` Structure

A basic .travis.yml file specifies the language

and build steps:

language: ruby

rvm:

 - 2.7

before_install:

 - gem install bundler

install:

 - bundle install

script:

 - bundle exec rspec

Key components:

language : Specifies the programming

language.

rvm (or equivalent): Specifies the version

manager and versions.

before_install : Commands to run before

installing dependencies.

install : Commands to install

dependencies.

script : Commands to run the build/test

suite.

Language Support

language:

ruby

Specifies the Ruby language

environment.

language:

node_js

Specifies the Node.js

environment.

language:

python

Specifies the Python

environment.

language:

java

Specifies the Java environment.

Build Lifecycle Stages

Travis CI build lifecycle consists of distinct

stages:

before_install : Prepare the environment.

install : Install dependencies.

before_script : Run commands before the

main script.

script : Run the primary build script (tests,

etc.).

after_success / after_failure :

Commands to run based on the script’s

success.

after_script : Always runs regardless of

build outcome.

before_deploy : Run before deploying

code.

deploy : Deploy the code to a provider.

after_deploy : Run commands after

successful deployment.

Environment Variables

env: Define environment variables for

the build. Can be global or matrix-

specific.

env:

 global:

 - secure:

ENCRYPTED_PASSWORD

 matrix:

 - TEST_SUITE=unit

 - TEST_SUITE=integration

Secure

Variables

Sensitive data should be encrypted

using the Travis CI CLI and stored

as secure: variables.

Build Matrix

A build matrix allows you to test your code

against multiple configurations.

matrix:

 include:

 - rvm: 2.6

 gemfile: gemfiles/rails-

5.2.gemfile

 - rvm: 2.7

 gemfile: gemfiles/rails-

6.0.gemfile

You can exclude specific configurations:

matrix:

 exclude:

 - rvm: 2.5

 gemfile: gemfiles/rails-

6.0.gemfile

Caching Dependencies

cache: Enable caching to speed up

builds by reusing dependencies.

cache:

 directories:

 - node_modules

 - vendor/bundle

Common

directories

node_modules ,

vendor/bundle , and other

dependency directories can be

cached.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
https://cheatsheetshero.com/

Deployment

Tips and Tricks

Basic Deployment Configuration

Travis CI supports deployment to various

providers. Here’s an example for deploying to

Heroku:

deploy:

 provider: heroku

 api_key:

 secure: ENCRYPTED_HEROKU_API_KEY

 app: your-heroku-app-name

 on:

 branch: master

Key components:

provider : Specifies the deployment

provider.

api_key : Your API key for the provider

(encrypted).

app : The name of your application on the

provider.

on : Conditions for deployment (e.g.,

branch).

Conditional Deployment

on:

branch:

master

Deploys only when the build is

triggered from the master

branch.

on: tags:

true

Deploys only when a tagged

commit is built.

Deployment Providers

Travis CI supports a wide range of deployment

providers, including:

Heroku

AWS (S3, Elastic Beanstalk)

Firebase

GitHub Pages

PyPI

npm

and many more.

Debugging Travis CI Builds

Debugging failed builds:

Check the Travis CI build logs for error

messages.

Enable debug mode by setting

travis_debug: true in your

.travis.yml .

Use SSH access for interactive debugging

(requires a paid plan).

Add echo statements in your

.travis.yml to print variable values and

execution flow.

Optimizing Build Times

Caching Cache dependencies to reduce

installation time.

Parallelization Run tests in parallel using tools

like parallel_test (for Ruby)

or tox (for Python).

Selective

Testing

Run only the necessary tests

based on changed files.

Common Issues and Solutions

Common issues:

Incorrect rvm or language version.

Missing dependencies.

Test failures due to environment differences.

Deployment failures due to incorrect

credentials.

Solutions:

Double-check your .travis.yml

configuration.

Ensure all dependencies are listed in your

dependency management file (e.g.,

Gemfile , package.json).

Use environment variables to handle

sensitive data.

Test your deployment process locally before

pushing to Travis CI.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

