CHEAT
SHEETS

Core Concepts & Configuration

Basic “travis.yml’ Structure

Abasic .travis.yml file specifies the language
and build steps:

language: ruby
rvm:

- 2.7
before_install:

- gem install bundler
install:

- bundle install
script:

- bundle exec rspec

Key components:

* language : Specifies the programming
language.

« rvm (orequivalent): Specifies the version
manager and versions.

* before_install : Commands to run before
installing dependencies.

e install : Commands to install
dependencies.

« script : Commands to run the build/test
suite.

Advanced Configuration

Environment Variables

env: Define environment variables for
the build. Can be global or matrix-
specific.
env:
global:
- secure:
ENCRYPTED_PASSWORD
matrix:
- TEST_SUITE=unit
- TEST_SUITE=integration

Secure Sensitive data should be encrypted
Variables using the Travis Cl CLI and stored
as secure: variables.
Page 1 of 2

Travis Cl Cheat Sheet

A comprehensive cheat sheet covering essential Travis Cl configurations, commands, and best practices for continuous integration and deployment.

Language Support
language: Specifies the Ruby language
ruby environment.
language: Specifies the Node.js
node_js environment.
language: Specifies the Python
python environment.
language: Specifies the Java environment.
java
Build Matrix

A build matrix allows you to test your code
against multiple configurations.
matrix:
include:
- rvm: 2.6
gemfile: gemfiles/rails-
5.2.gemfile
- rvm: 2.7
gemfile: gemfiles/rails-

6.0.gemfile

You can exclude specific configurations:

matrix:
exclude:
- rvm: 2.5
gemfile: gemfiles/rails-

6.0.gemfile

Build Lifecycle Stages

Travis Cl build lifecycle consists of distinct
stages:
e before_install : Prepare the environment.

e install :Install dependencies.

. before_script : Run commands before the
main script.

« script :Run the primary build script (tests,
etc.).

. after_success / after_failure :
Commands to run based on the script’s
success.

. after_script :Always runs regardless of
build outcome.

* before_deploy : Run before deploying
code.

» deploy : Deploy the code to a provider.

« after_deploy : Run commands after
successful deployment.

Caching Dependencies

cache: Enable caching to speed up

builds by reusing dependencies.
cache:
directories:

- node_modules

- vendor/bundle

Common
directories

node_modules ,

vendor/bundle , and other
dependency directories can be
cached.

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
https://cheatsheetshero.com/

Deployment

Basic Deployment Configuration

Travis Cl supports deployment to various
providers. Here's an example for deploying to
Heroku:

deploy:
provider: heroku
api_key:
secure: ENCRYPTED_HEROKU_API_KEY
app: your-heroku-app-name
on:

branch: master

Key components:
= provider : Specifies the deployment

provider.

e api_key : Your APl key for the provider
(encrypted).

= app : The name of your application on the
provider.

« on : Conditions for deployment (e.g.,
branch).

Tips and Tricks

Debugging Travis Cl Builds

Debugging failed builds:

» Check the Travis Cl build logs for error

messages.

» Enable debug mode by setting
travis_debug: true inyour
.travis.yml

» Use SSH access for interactive debugging

(requires a paid plan).

° Add echo statements in your
.travis.yml to print variable values and

execution flow.

Page 2 of 2

Conditional Deployment

on: Deploys only when the build is
branch: triggered from the master
master branch.

on: tags: Deploys only when atagged
true commit is built.

Deployment Providers

Travis Cl supports a wide range of deployment
providers, including:

e Heroku

« AWS (S3, Elastic Beanstalk)
« Firebase

» GitHub Pages

* PyPI

= npm

* and many more.

Optimizing Build Times

Cache dependencies to reduce
installation time.

Caching

Run tests in parallel using tools
like parallel_test (for Ruby)
or tox (for Python).

Parallelization

Selective
Testing

Run only the necessary tests
based on changed files.

Common Issues and Solutions

Common issues:
» Incorrect rvm orlanguage version.
» Missing dependencies.
« Test failures due to environment differences.

» Deployment failures due to incorrect
credentials.

Solutions:

* Double-check your .travis.yml
configuration.

» Ensure all dependencies are listed in your
dependency management file (e.g.,

Gemfile , package.json).

= Use environment variables to handle
sensitive data.

= Test your deployment process locally before
pushing to Travis CI.

https://cheatsheetshero.com

https://cheatsheetshero.com/

