
Unix Shell Cheatsheet
A comprehensive cheat sheet for navigating and manipulating the Unix shell environment, covering essential commands, shortcuts, and scripting

techniques.

Navigation & File Management

Working with Text

Basic Commands

pw

d

Print working directory (shows the current directory).

ls List directory contents (files and subdirectories).

Options: -l (long listing), -a (all files, including hidden), -t

(sort by modification time), -h (human-readable sizes).

cd Change directory.

cd .. (move up one level), cd ~ (go to home directory), cd -

(go to the previous directory).

mkd

ir

Create a new directory.

mkdir directory_name

rmd

ir

Remove an empty directory.

rmdir directory_name

tou

ch

Create an empty file or update the timestamp of an existing file.

touch file_name

File Operations

cp Copy files or directories.

cp source_file destination_file , cp -r source_directory

destination_directory (recursive copy for directories).

mv Move or rename files or directories.

mv source_file destination_file , mv old_name new_name

rm Remove files.

rm file_name , rm -r directory_name (recursive removal for

directories), rm -f file_name (force removal).

ca

t

Concatenate and display file contents.

cat file_name

hea

d

Display the beginning of a file.

head file_name (first 10 lines), head -n 20 file_name (first 20

lines).

tai

l

Display the end of a file.

tail file_name (last 10 lines), tail -n 20 file_name (last 20

lines), tail -f file_name (follow the file as it grows).

les

s

View file contents page by page.

less file_name

Text Manipulation

gr

ep

Search for patterns in files.

grep 'pattern' file_name , grep -i 'pattern' file_name

(case-insensitive), grep -r 'pattern' directory_name (recursive

search).

se

d

Stream editor for text manipulation.

sed 's/old/new/g' file_name (replace all occurrences of ‘old’ with

‘new’).

aw

k

Pattern scanning and processing language.

awk '{print $1}' file_name (print the first field of each line).

w

c

Word count.

wc file_name (lines, words, characters), wc -l file_name (lines

only).

so

rt

Sort lines of text files.

sort file_name , sort -n file_name (numeric sort), sort -r

file_name (reverse sort).

un

iq

Remove duplicate lines.

uniq file_name (requires sorted input).

cu

t

Cut sections from each line of files.

cut -d ',' -f 1 file_name (cut the first field using ‘,’ as delimiter).

Redirection and Pipes

> - Redirect output to a file (overwrite).

Example:

ls > file_list.txt

>> - Redirect output to a file (append).

Example:

ls >> file_list.txt

| - Pipe the output of one command to another.

Example:

ls -l | grep 'pattern' (list files and filter the output).

2> - Redirect standard error to a file.

Example:

command 2> error.log

&> - Redirect both standard output and standard error to a file.

Example:

command &> output.log

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/59-unix-shell-cheatsheet
http://cheatsheetshero.com/user/all/59-unix-shell-cheatsheet
http://cheatsheetshero.com/user/all/59-unix-shell-cheatsheet
https://cheatsheetshero.com/

System Information & Processes

Shell Scripting

System Info

uname Print system information.

uname -a (all information).

df Display disk space usage.

df -h (human-readable).

du Estimate file space usage.

du -sh directory_name (summary, human-readable).

free Display amount of free and used memory.

free -m (in MB), free -g (in GB).

uptime Show how long the system has been running.

whoami Print effective user ID.

hostname Display the system’s hostname.

Process Management

ps Display running processes.

ps aux (show all processes).

top Display dynamic real-time view of running processes.

kil

l

Terminate a process.

kill PID (sends TERM signal), kill -9 PID (sends KILL signal,

forceful termination).

job

s

List active jobs.

bg Put a job in the background.

bg %job_number

fg Bring a job to the foreground.

fg %job_number

nohu

p

Run a command immune to hangups, with output to a non-tty.

nohup command &

Basic Script Structure

Shebang (#!/bin/bash) indicates the

interpreter for the script.

#!/bin/bash

Comments start with '#'

echo "Hello, world!"

Variables:

NAME="John"

echo "My name is $NAME"

Command Substitution:

DATE=$(date)

echo "Today is $DATE"

Control Flow

if

statement
if [condition]; then

 # code to execute if

condition is true

else

 # code to execute if

condition is false

fi

for loop
for item in list;

do

 # code to execute for

each item

done

while loop
while [condition]; do

 # code to execute while

condition is true

done

case

statement
case variable in

 pattern1)

 # code to execute if

variable matches pattern1

 ;;

 pattern2)

 # code to execute if

variable matches pattern2

 ;;

esac

Functions

function_name() {

 # function body

 echo "Function called with arguments:

$@"

 return 0

}

function_name arg1 arg2

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

