
Yii Framework Cheatsheet
A concise reference guide to the Yii PHP framework, covering core components, commonly used features, and best practices for efficient web

application development.

Core Concepts & Architecture

MVC Structure

Model Represents data and business

logic. Interacts with the

database.

View Presents the data to the user.

Consists of HTML, CSS, and

PHP code for display.

Controller Handles user requests,

interacts with models, and

selects views to render.

Entry Script

(index.php)

The single entry point for all

web requests. Initializes the

application.

Application The central object that

manages the overall execution

flow.

Components Reusable modules providing

specific functionalities (e.g.,

database, session, user).

Application Lifecycle

1. User makes a request (e.g., index.php?

r=post/view&id=123).

2. Entry script (index.php) creates and

initializes the application.

3. Application retrieves request information

from request component.

4. Application creates a controller instance to

handle the request.

5. Controller creates action instance and

performs the action.

6. Action loads relevant data models, possibly

with database interaction.

7. Action renders a view, passing the models as

parameters.

8. View renders the data into HTML.

9. The rendered result is returned to the user.

Configuration

Configuration

Array

Yii applications are configured

using a PHP array, typically

located in config/web.php

or config/console.php .

Components

Configuration

Configures core application

components such as db ,

cache , user , session ,

etc.

Modules

Configuration

Defines modules and their

specific configurations.

Parameters

Configuration

Defines global application

parameters accessible

throughout the application.

Example
'components' => [

 'db' => [

 'class' =>

'yii\db\Connection',

 'dsn' =>

'mysql:host=localhost;db

name=mydatabase',

 'username' =>

'root',

 'password' =>

'',

 'charset' =>

'utf8',

],

],

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
https://cheatsheetshero.com/

Database Interaction

Working with Views & Controllers

Active Record

Active Record (AR) provides an object-oriented

interface for accessing and manipulating data

stored in databases. Each AR class represents a

database table, and an AR instance represents a

row in that table.

Defining an AR Class

class Customer extends

\yii\db\ActiveRecord

{

 public static function tableName()

 {

 return 'customers';

 }

}

Basic CRUD Operations

Create: $customer = new Customer();

$customer->name = 'John Doe';

$customer->email =

'john.doe@example.com'; $customer-

>save();

Read: $customer =

Customer::findOne(123); or $customers

= Customer::findAll(['status' => 1]);

Update: $customer =

Customer::findOne(123); $customer-

>email = 'new.email@example.com';

$customer->save();

Delete: $customer =

Customer::findOne(123); $customer-

>delete();

Query Builder

The Query Builder provides a programmatic and

database-agnostic way to construct SQL queries.

Example:

$customers = (new \yii\db\Query())

 ->select(['id', 'name', 'email'])

 ->from('customers')

 ->where(['status' => 1])

 ->orderBy('name')

 ->limit(10)

 ->all();

Chaining Methods: The Query Builder allows you

to chain methods to build complex queries easily.

Migrations

Creating a

Migration

./yii migrate/create

create_users_table

Applying

Migrations

./yii migrate

Reverting

Migrations

./yii migrate/down

Migration Class

Structure
class

m150101_185401_create_us

ers_table extends

\yii\db\Migration

{

 public function up()

 {

 $this-

>createTable('users', [

 'id' =>

$this->primaryKey(),

 'username'

=> $this->string()-

>notNull()->unique(),

 'email' =>

$this->string()-

>notNull()->unique(),

]);

 }

 public function

down()

 {

 $this-

>dropTable('users');

 }

}

Rendering Views

Rendering a

Simple View
$this->render('view',

['model' => $model]);

Rendering a

View with

Layout

$this->render('view',

['model' => $model],

'main');

Rendering a

Partial View
$this-

>renderPartial('_form',

['model' => $model]);

Accessing

Variables in

Views

Variables passed to the

render() method are

available in the view as local

variables (e.g., $model).

Controller Actions

Controller actions are methods within a controller

class that handle specific user requests. They

typically perform tasks such as loading data,

processing user input, and rendering views.

Action Naming Convention: Action names should

start with the word action (e.g.,

actionCreate , actionView).

Example:

public function actionView($id)

{

 $model = $this->findModel($id);

 return $this->render('view',

['model' => $model]);

}

Layouts

Main Layout The default layout file, typically

located in

views/layouts/main.php ,

defines the overall structure of

the web page.

Layout

Structure

Layout files typically contain

HTML <html> , <head> , and

<body> tags, as well as

placeholders for content and

other dynamic elements.

Rendering

Content in

Layout

The $content variable within

the layout file holds the rendered

output of the view.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Forms and Input Validation

Creating Forms

Forms in Yii are typically created using the

yii\widgets\ActiveForm widget, which

simplifies the process of generating HTML form

elements and handling user input.

Example:

<?php $form = ActiveForm::begin(['id' =>

'login-form']); ?>

 <?= $form->field($model, 'username')

?>

 <?= $form->field($model,

'password')->passwordInput() ?>

 <div class="form-group">

 <?= Html::submitButton('Login',

['class' => 'btn btn-primary']) ?>

 </div>

<?php ActiveForm::end(); ?>

Input Validation

Validation

Rules

Define validation rules in the

model’s rules() method. Rules

specify which attributes should be

validated and how.

Common

Validators

required , email , string ,

integer , number , boolean ,

date , unique , exist ,

captcha .

Example:
public function rules()

{

 return [

 [['username',

'password'], 'required'],

 ['email', 'email'],

 ['username',

'string', 'min' => 3, 'max'

=> 255],

];

}

Handling Form Submission

In the controller action, check if the form has

been submitted and if the model is valid. If so,

process the data and redirect the user.

Example:

public function actionLogin()

{

 $model = new LoginForm();

 if ($model->load(Yii::$app->request-

>post()) && $model->login()) {

 return $this->goHome();

 }

 return $this->render('login',

['model' => $model]);

}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

