
Regex and Text Manipulation Cheat Sheet
A comprehensive cheat sheet covering regular expressions and text manipulation techniques. Learn how to effectively search, extract, and modify

text using various tools and methods.

Regex Basics

Advanced Regex

Text Manipulation Tools

Metacharacters

\ Escapes the next character.

^ Matches the beginning of the string or

line.

$ Matches the end of the string or line.

. Matches any single character except

newline.

| Alternation (OR operator).

() Grouping and capturing.

[] Character class (matches any

character within the brackets).

{} Quantifier (specifies how many

occurrences to match).

* ,

+ , ?

Quantifiers: * (0 or more), + (1 or

more), ? (0 or 1).

Character Classes

\d Matches any digit (0-9).

\D Matches any non-digit character.

\w Matches any word character (a-z, A-Z,

0-9, _).

\W Matches any non-word character.

\s Matches any whitespace character

(space, tab, newline).

\S Matches any non-whitespace character.

[abc

]

Matches a, b, or c.

[^ab

c]

Matches any character except a, b, or c.

[a-

z]

Matches any lowercase letter.

Quantifiers

* Matches 0 or more occurrences.

+ Matches 1 or more occurrences.

? Matches 0 or 1 occurrence.

{n} Matches exactly n occurrences.

{n,

}

Matches n or more occurrences.

{n,m

}

Matches between n and m occurrences

(inclusive).

Grouping and Capturing

() Creates a capturing group. The

matched text within the

parentheses can be referenced

later.

\1 , \2 ,

etc.

Backreferences to the captured

groups. \1 refers to the first

group, \2 to the second, and so

on.

(?:pattern) Non-capturing group. Groups the

pattern but doesn’t capture the

matched text.

Lookarounds

(?

=patt

ern)

Positive lookahead. Matches if the

pattern follows the current position, but

doesn’t include the pattern in the match.

(?!p

atter

n)

Negative lookahead. Matches if the

pattern does not follow the current

position.

(?

<=pat

tern

)

Positive lookbehind. Matches if the

pattern precedes the current position,

but doesn’t include the pattern in the

match.

(?

<!pat

tern

)

Negative lookbehind. Matches if the

pattern does not precede the current

position.

Flags/Modifiers

i Case-insensitive matching.

g Global matching (find all matches instead

of stopping after the first).

m Multiline mode (^ and $ match the

start and end of each line).

s Dotall mode (. matches any character,

including newline).

Common Tools

grep: A command-line tool for searching text

using regular expressions.

sed: A stream editor for performing text

transformations using regular expressions.

awk: A programming language designed for text

processing and data extraction.

Grep Examples

grep 'pattern' file.txt - Searches for

‘pattern’ in file.txt.

grep -i 'pattern' file.txt - Case-

insensitive search.

grep -r 'pattern' directory/ - Recursive

search in a directory.

grep -v 'pattern' file.txt - Invert match

(show lines that do NOT contain the pattern).

grep -E 'pattern1|pattern2' file.txt -

Search for either pattern1 or pattern2 (extended

regex).

Sed Examples

sed 's/old/new/g' file.txt - Replace all

occurrences of ‘old’ with ‘new’ in file.txt.

sed 's/old/new/gi' file.txt - Case-

insensitive global replacement.

sed '/pattern/d' file.txt - Delete lines

containing ‘pattern’.

sed 's/^/# /' file.txt - Add a ‘#’ at the

beginning of each line.

sed 's/\.$/!/g' file.txt - Replace a period

at the end of a line with an exclamation mark.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/608-regex-and-text-manipulation-cheat-sheet
http://cheatsheetshero.com/user/all/608-regex-and-text-manipulation-cheat-sheet
http://cheatsheetshero.com/user/all/608-regex-and-text-manipulation-cheat-sheet
https://cheatsheetshero.com/

Programming Languages

Python Regex

import re

Matching

pattern = r"hello"

string = "hello world"

match = re.search(pattern, string)

if match:

 print("Match found:", match.group())

Replacing

new_string = re.sub(pattern, "goodbye",

string)

print(new_string)

Splitting

words = re.split(r"\s+", string)

print(words)

JavaScript Regex

// Matching

const pattern = /hello/;

const string = "hello world";

const match = string.match(pattern);

if (match) {

 console.log("Match found:",

match[0]);

}

// Replacing

const newString =

string.replace(pattern, "goodbye");

console.log(newString);

// Testing

const testResult = pattern.test(string);

console.log("Test result:", testResult);

Ruby Regex

Matching

pattern = /hello/

string = "hello world"

match = string.match(pattern)

if match

 puts "Match found: #{match[0]}"

end

Replacing

new_string = string.gsub(pattern,

"goodbye")

puts new_string

Splitting

words = string.split(/\s+/)

puts words

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

