
Competitive Programming Tips
A cheat sheet filled with tips and tricks to help you succeed in competitive programming contests. Covers problem-solving strategies, common

algorithms, and useful coding techniques.

Problem Solving Strategies

Common Algorithms & Data Structures

Coding Techniques & Optimizations

Understanding the Problem

Read Carefully: Ensure you fully understand the

problem statement, input/output formats, and

constraints.

Clarify Ambiguities: If anything is unclear, look

for clarifications or examples. Don’t make

assumptions.

Identify Key Information: Pinpoint the core

requirements and constraints that dictate the

solution approach.

Test Cases: Create small, medium, and large test

cases, including edge cases, to validate your

understanding.

Designing an Algorithm

Choose the Right Algorithm: Select an

appropriate algorithm based on the problem type

and constraints (e.g., dynamic programming,

graph algorithms, greedy algorithms).

Time Complexity: Analyze the time complexity of

your algorithm to ensure it meets the problem’s

time limits. Use Big O notation.

Space Complexity: Consider the memory usage

of your algorithm, especially for problems with

memory constraints.

Pseudocode: Write pseudocode to outline your

algorithm before implementing it in code. This

helps in clarifying the logic and identifying

potential issues.

Implementation Tips

Modular Code: Break down your code into

smaller, reusable functions or classes to improve

readability and maintainability.

Meaningful Variable Names: Use descriptive

variable names to enhance code clarity.

Comments: Add comments to explain complex

logic or algorithms. This aids debugging and

understanding.

Debugging: Use debugging tools to step through

your code and identify errors. Learn to use a

debugger effectively.

Sorting Algorithms

Quicksort Efficient sorting algorithm with

average time complexity of O(n log

n). Watch out for worst case O(n^2).

Often implemented using recursion.

Good for general-purpose sorting.

Merge

Sort

Stable sorting algorithm with

guaranteed O(n log n) time

complexity. Uses a divide-and-

conquer approach. Well-suited for

sorting linked lists and external

sorting.

Heapsort Sorting algorithm with O(n log n)

time complexity. An in-place

algorithm. Useful when memory is

limited.

Search Algorithms

Binary

Search

Efficient search algorithm for

sorted arrays or lists. Has a time

complexity of O(log n). Requires

data to be pre-sorted.

Breadth-

First Search

(BFS)

Graph traversal algorithm for

finding the shortest path in

unweighted graphs. Uses a queue

data structure.

Depth-First

Search

(DFS)

Graph traversal algorithm that

explores as far as possible along

each branch before backtracking.

Uses a stack data structure or

recursion.

Dynamic Programming

Memoization: Store the results of expensive

function calls and reuse them when the same

inputs occur again.

Tabulation: Build a table of results bottom-up,

iteratively filling in solutions to subproblems.

Optimal Substructure: An optimal solution can be

constructed from optimal solutions of its

subproblems.

Overlapping Subproblems: The same

subproblems are solved repeatedly, allowing for

memoization or tabulation.

Input/Output Optimization

Fast I/O: Use optimized I/O routines specific to

the programming language to reduce overhead

(e.g., scanf/printf in C/C++,

BufferedReader/PrintWriter in Java).

Buffering: Read input in larger chunks to

minimize the number of system calls.

Data Structure Selection

Arrays vs. Linked Lists: Choose arrays for fast

random access and linked lists for efficient

insertion/deletion.

Hash Tables: Use hash tables for fast lookups and

insertions. Be mindful of hash collisions.

Trees: Use trees (e.g., binary search trees, AVL

trees) for ordered data and efficient

searching/insertion/deletion.

Heaps: Use heaps for priority queues and finding

minimum/maximum elements.

Bit Manipulation

Bitwise Operators: Use bitwise operators (& ,

| , ^ , ~ , << , >>) for efficient operations

on integers (e.g., checking if a number is a power

of 2, setting/clearing bits).

Bitmasks: Use bitmasks to represent sets or

subsets of elements.

Loop Optimization

Loop Unrolling: Reduce loop overhead by

processing multiple elements in each iteration.

Strength Reduction: Replace expensive

operations (e.g., multiplication) with cheaper

ones (e.g., addition).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/617-competitive-programming-tips-cheatsheet
http://cheatsheetshero.com/user/all/617-competitive-programming-tips-cheatsheet
http://cheatsheetshero.com/user/all/617-competitive-programming-tips-cheatsheet
https://cheatsheetshero.com/

Contest Strategies

Before the Contest

Practice: Solve a variety of problems from

different platforms (e.g., LeetCode, Codeforces,

HackerRank) to improve your skills and speed.

Familiarize: Get familiar with the contest

platform, rules, and allowed resources.

Templates: Prepare code templates for common

algorithms and data structures to save time

during the contest.

During the Contest

Prioritize Problems: Quickly scan all problems and

prioritize them based on difficulty and your

strengths.

Time Management: Allocate time for each

problem and track your progress. Don’t spend too

much time on a single problem initially.

Test Thoroughly: Test your code with a variety of

test cases, including edge cases, before

submitting.

Debug Strategically: If your code fails, use

debugging techniques to identify the issue

quickly.

After the Contest

Review Solutions: Analyze the official solutions

and other participants’ code to learn new

techniques and improve your understanding.

Practice More: Continue practicing to reinforce

your skills and address your weaknesses.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

