
Essential Development Tools & Concepts Cheatsheet
A concise reference to key tools and concepts in modern software development, aiding in efficiency and best practices.

Version Control with Git

Containerization with Docker

Basic Git Commands

git init Initializes a new Git

repository.

git clone

<url>

Clones a repository from a

URL.

git add

<file>

Adds a file to the staging

area.

git commit -m

"<message>"

Commits changes with a

descriptive message.

git push

origin

<branch>

Pushes local commits to a

remote repository.

git pull

origin

<branch>

Pulls changes from a remote

repository.

git status Shows the status of the

working directory.

git branch Lists all local branches.

git checkout

<branch>

Switches to the specified

branch.

Branching and Merging

git branch

<new-branch>

Creates a new branch.

git checkout -

b <new-branch>

Creates and switches to a

new branch.

git merge

<branch>

Merges the specified branch

into the current branch.

git log Shows the commit history.

git diff Shows changes between

commits, branches, etc.

Undoing Changes

git

revert

<commit>

Creates a new commit that undoes

the changes made in the specified

commit.

git reset

HEAD

<file>

Unstages a file from the staging

area.

git

checkout -

- <file>

Discards changes in the working

directory.

Basic Docker Commands

docker build -t

<image-name> .

Builds a Docker image

from a Dockerfile.

docker run

<image-name>

Runs a container from an

image.

docker ps Lists running containers.

docker stop

<container-id>

Stops a running container.

docker rm

<container-id>

Removes a stopped

container.

docker images Lists all available Docker

images.

docker rmi

<image-id>

Removes a Docker image.

Docker Compose

docker

-

compose

up

Builds, (re)creates, starts, and

attaches to containers defined in a

docker-compose.yml file.

docker

-

compose

down

Stops and removes containers,

networks, volumes, and images

defined in a docker-compose.yml

file.

docker

-

compose

ps

Lists the containers managed by

Docker Compose.

Dockerfile Instructions

FROM

<image>

Specifies the base image for the

Docker image.

RUN

<command

>

Executes a command during the

image build process.

COPY

<src>

<dest>

Copies files or directories from the

host to the container.

WORKDIR

<path>

Sets the working directory for

subsequent instructions.

EXPOSE

<port>

Exposes a port for network traffic.

CMD

<command

>

Specifies the default command to

run when the container starts.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/631-essential-development-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/631-essential-development-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/631-essential-development-tools-concepts-cheatsheet
https://cheatsheetshero.com/

Continuous Integration/Continuous Deployment (CI/CD)

Code Quality and Linters

Key Concepts

Continuous Integration (CI): Automates the

integration of code changes from multiple

developers into a shared repository. It involves

automated testing to detect integration errors

early.

Continuous Deployment (CD): Automates the

release of code changes to production or staging

environments. It extends CI by automatically

deploying all code changes that pass the

automated tests.

Continuous Delivery: Similar to Continuous

Deployment, but requires manual approval for

deployment to production. Automates the steps

up to the production deployment.

Common CI/CD Tools

Jenkins An open-source automation server

that supports building, testing, and

deploying software.

GitLab CI Integrated CI/CD pipeline within

GitLab for automated building,

testing, and deployment.

GitHub

Actions

Automates software workflows

directly in your GitHub repository.

CircleCI A cloud-based CI/CD platform that

automates the build, test, and

deployment process.

Travis CI A cloud-based CI service used for

building and testing software

projects hosted on GitHub and

Bitbucket.

Pipeline Stages

Typical CI/CD pipelines include stages like:

Build: Compile code and create artifacts.

Test: Run automated tests (unit, integration,

end-to-end).

Package: Bundle artifacts for deployment.

Deploy: Deploy artifacts to the target

environment (staging, production).

Code Quality Metrics

Code Coverage: Percentage of code

executed by tests.

Cyclomatic Complexity: Measures the

complexity of a program by counting the

number of linearly independent paths

through the source code.

Maintainability Index: Indicates the ease with

which software can be maintained.

Linters and Code Analysis Tools

ESLint A linter for JavaScript and JSX.

Stylelint A linter for CSS and SCSS.

SonarQube A platform for continuous

inspection of code quality.

PMD A source code analyzer for Java,

JavaScript, and other languages.

Checkstyle A tool for checking Java code style.

Benefits of Using Linters

Enforces consistent coding style across the

project.

Detects potential bugs and errors early.

Improves code readability and

maintainability.

Reduces code review time.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

